摘要:
A processing apparatus and method for depositing a passivating layer on a mercury-cadmium-telluride wafer utilizing a single process chamber to provide oxygen gas to the chamber with the excitation energy being provided by a remotely generated plasma in order to remove any organic residue and then supplying either a sulfide or selenide gas in combination with illuminating the wafer with an in situ generated ultraviolet energy to produce a passivating layer.
摘要:
A II-VI compound, such as zinc sulfide, is deposited from a gaseous mixture in a reactor which is compatible with a vacuum processing system which includes vacuum wafer transport. Two manifolds are used, each connected to a supply of one or more reagent gases, to improve uniformity.
摘要:
A film of mercury-cadmium-telluride (HgCdTe) or zinc sulfide (ZnS) is anisotropically etched utilizing a remote plasma and an in situ plasma utilizing a gas mixture which includes a hydrogen containing and/or an alkyl bearing gas providing an anisotropic etch.
摘要:
The deposition of zinc sulfide films (16) using dimethylzinc (46) and hydrogen sulfide (44) in a vacuum processor reactor (50) provides a low temperature process applicable for high volume production of infrared focal planes. These layers (16) of zinc sulfide are used as insulators and infrared anti-reflective coatings which are free of contamination relative to physical vapor deposited ZnS films. The zinc sulfide layers (16) are formed by evacuating a chamber (62) and mixing hydrogen sulfide gas (44) and dimethylzinc gas (46) at specific operating conditions until the desired ZnS film thickness is obtained. The rate of growth of the zinc sulfide (16) film is controlled by varying the temperature, pressure, and the relative flow rates of the hydrogen sulfide gas (44) and the dimethylzinc gas (46).
摘要:
A high pressure processing apparatus and method which is compatible with a system wherein wafers are largely transported and processed under vacuum. The pressure vessel can be extremely small, i.e. has a total pressurized volume of which almost all interior points are within one or two centimeters of one of the workpiece or wafers which may be loaded into the chamber. HgCdTe is passivated by utilizing oxygen and water vapor for oxidation or a source of sulfur for sulfidization. The wafers and the gases are heated by a heater located on the vertical walls of the process chamber.
摘要:
A processing apparatus and method wherein a wafer is exposed to activated species generated by a first plasma which is separate from the wafer, but is in the process gas flow stream upstream of the wafer, and is also exposed to plasma bombardment generated by a second plasma which has a dark space which substantially adjoins the surface of the wafer. The in situ plasma is relatively low-power, so that the remote plasma can generate activated species, and therefore the in situ plasma power level can be adjusted to optimize the plasma bombardment. Ultraviolet light to illuminate the face of a wafer being processed is generated by a plasma which is within the vacuum chamber but is remote from the face of the wafer and controlled independent of the in situ plasma. It is useful to design the gas flow system such that the ultraviolet-generating plasma has its own gas feed, and the reaction products from the ultraviolet-generating plasma do not substantially flow or diffuse to the wafer face. A transparent isolator is usefully included between the ultraviolet plasma space and the processing space near the wafer face, so that the ultraviolet plasma can be operated at a vacuum level slightly different from that used near the wafer face.
摘要:
A processing apparatus and method wherein two separate gas feeds are provided in proximity to the face of a face down wafer. A shroud can be used to maximize mixing of the two gas feed streams without excessive residence time.
摘要:
A processing apparatus and method wherein a wafer is exposed to activated species generated by a first plasma which is separate from the wafer, but is in the process gas flow stream upstream of the wafer, and is also exposed to plasma bombardment generated by a second plasma which has a dark space which substantially adjoins the surface of the wafer. The in situ plasma is relatively low-power, so that the remote plasma can generate activated species, and therefore the in situ plasma power level can be adjusted to optimize the plasma bombardment. Ultraviolet light to illuminate the face of a wafer being processed is generated by a plasma which is within the vacuum chamber but is remote from the face of the wafer. It is useful to design the gas flow system such that the ultraviolet-generating plasma has its own gas feed, and the reaction products from the ultraviolet-generating plasma do not substantially flow or diffuse to the wafer face. A transparent isolator is usefully included between the ultraviolet plasma space and the processing space near the wafer face, so that the ultraviolet plasma can be operated at a vacuum level slightly different from that used near the wafer face, delete but this transparent window is not made thick enough to act as a full vacuum seal.
摘要:
A process is disclosed through which vias (50) can be formed by the reaction of an etchant species (52) with a mercury cadmium telluride (HgCdTe) or zinc sulfide (ZnS) layer (42). The activating gases (20) are preferably a hydrogen gas or a methane gas which is excited in a diode plasma reactor (100) which has an RF power source (13) applied to one of two parallel electrodes. The etching occurs in selected areas in a photoresist pattern (44) residing over the ZnS or HgCdTe layer (42). Wet etching the layer (42) with a wet etchant (54) following the dry etching, improves the via (50) by making the walls (48) smoother, and allowing for expansion of the vias (50) to a dimension necessary for proper operation of a HgCdTe-based infrared detector.
摘要:
A process is disclosed through which vias (50) can be formed by the reaction of an etchant species (52) with a mercury cadmium telluride (HgCdTe) or zinc sulfide (ZnS) layer (42). The activating gases (20) are preferably a hydrogen gas or a methane gas which is excited in a diode plasma reactor (100) which has an RF power source (13) applied to one of two parallel electrodes. The etching occurs in selected areas in a photoresist pattern (44) residing over the ZnS or HgCdTe layer (42). Wet etching the layer (42) with a wet etchant (54) following the dry etching, improves the via (50) by making the walls (48) smoother, and allowing for expansion of the vias (50) to a dimension necessary for proper operation of a HgCdTe-based infrared detector.