摘要:
Semiconductor device annealing process with deuterium at superatmospheric pressures to improve reduction of the effects of hot carrier stress during device operation, and devices produced thereby.
摘要:
Described are preferred processes for conditioning semiconductor devices with deuterium to improve operating characteristics and decrease depassivation which occurs during the course of device operation. Also described are semiconductor devices which can be prepared by such processes.
摘要:
Described are preferred processes for conditioning semiconductor devices with deuterium to improve operating characteristics and decrease depassivation which occurs during the course of device operation. Also described are semiconductor devices which can be prepared by such processes.
摘要:
Described are preferred processes for conditioning semiconductor devices with deuterium to improve operating characteristics and decrease depassivation which occurs during the course of device operation. Also described are semiconductor devices which can be prepared by such processes.
摘要:
Described are preferred processes for conditioning semiconductor devices with deuterium to improve operating characteristics and decrease depassivation which occurs during the course of device operation. Also described are semiconductor devices which can be prepared by such processes.
摘要:
The invention provides methods for sharpening the tip of an electrical conductor. The methods of the invention are capable of producing tips with an apex radius of curvature less than 2 nm. The methods of the invention are based on simultaneous direction of ionized atoms towards the apex of a previously sharpened conducting tip and application of an electric potential difference to the tip. The sign of the charge on the ions is the same as the sign of the electric potential. The methods of the invention can be used to sharpen metal wires, metal wires tipped with conductive coatings, multi-walled carbon nanotubes, semiconducting nanowires, and semiconductors in other forms.
摘要:
The invention provides methods for sharpening the tip of an electrical conductor. The methods of the invention are capable of producing tips with an apex radius of curvature less than 2 nm. The methods of the invention are based on simultaneous direction of ionized atoms towards the apex of a previously sharpened conducting tip and application of an electric potential difference to the tip. The sign of the charge on the ions is the same as the sign of the electric potential. The methods of the invention can be used to sharpen metal wires, metal wires tipped with conductive coatings, multi-walled carbon nanotubes, semiconducting nanowires, and semiconductors in other forms.
摘要:
The invention provides methods for sharpening the tip of an electrical conductor. The methods of the invention are capable of producing tips with an apex radius of curvature less than 2 nm. The methods of the invention are based on simultaneous direction of ionized atoms towards the apex of a previously sharpened conducting tip and application of an electric potential difference to the tip. The sign of the charge on the ions is the same as the sign of the electric potential. The methods of the invention can be used to sharpen metal wires, metal wires tipped with conductive coatings, multi-walled carbon nanotubes, semiconducting nanowires and semiconductors in other forms.
摘要:
An electrochemical cell is described that includes (a) a first electrode; (b) a second electrode; and (c) a channel contiguous with at least a portion of the first and the second electrodes. When a first liquid is contacted with the first electrode, a second liquid is contacted with the second electrode, and the first and the second liquids flow through the channel, a parallel laminar flow is established between the first and the second liquids. Electronic devices containing such electrochemical cells and methods for their use are also described.
摘要:
An electrochemical cell is described that includes (a) a first electrode; (b) a second electrode; and (c) a channel contiguous with at least a portion of the first and the second electrodes. When a first liquid is contacted with the first electrode, a second liquid is contacted with the second electrode, and the first and the second liquids flow through the channel, a parallel laminar flow is established between the first and the second liquids. Electronic devices containing such electrochemical cells and methods for their use are also described.