摘要:
A method for electrochemical etching of a semiconductor material using positive potential dissolution (PPD) in solutions that do not contain hydrofluoric acid (HF-free solutions). The method includes immersing an as-cut semiconductor material in an etching solution, and positive biasing at atypically highly positive (anodic) potentials, thereby significantly increasing the value of the anodic current density (measured as A/cm2) of the semiconductor material. The application of positive biasing at atypically highly positive (anodic) potentials, is combined with specifically controlling and directing illumination on the semiconductor material surface contacted and wetted by the etching solution. This is done for a necessary and sufficient period of time to enable a positive synergistic effect on the rate and extent of etching of the semiconductor material therefrom.
摘要翻译:在不含氢氟酸(无HF溶液)的溶液中使用正电位溶解(PPD)对半导体材料进行电化学蚀刻的方法。 该方法包括将切割的半导体材料浸入蚀刻溶液中,并且以非常高的正(阳极)电位进行正偏压,从而显着提高半导体材料的阳极电流密度(以A / cm 2测量)的值。 在非常高的正(阳极)电位下施加正偏压,与在蚀刻溶液接触和润湿的半导体材料表面上特别地控制和引导照明相结合。 这是为了实现对半导体材料的蚀刻速率和程度的积极的协同效应而进行的必要和充分的时间段。
摘要:
A method for producing protecting layers on a metal selected from aluminum, titanium and zirconium, or alloys thereof, involves at least two anodic oxidation steps producing oxide layers and a thermal treatment which is carried out before or simultaneously with last anodic oxidation step. The treated metal according to the invention is protected even at high temperatures and under conditions of thermal cycling.
摘要:
A method of obtaining a mask for X-ray lithography having a thin oxide film supported on an annular silicon base includes the following steps:(a) deposition of an oxide layer such as titania or zirconia, on a silicon or copper substrate;(b) etching selectively a portion of the backside of the substrate, obtaining a membrane on the etched portion; and(c) obtaining a pattern delineation through a photoresist on the membrane framed by the silicon or copper substrate.The mask prepared according to the present invention does not suffer from any distortion and preserves its accuracy even under the stresses incurred during the mask preparation and use.
摘要:
A method for producing protecting layers on a metal selected from aluminum, titanium and zirconium, or alloys thereof, involves at least two anodic oxidation steps producing oxide layers and a thermal treatment which is carried out before the last anodic oxidation step. The treated metal according to the invention is protected even at high temperatures and under conditions of thermal cycling.
摘要:
A method of obtaining a mask for X-ray lithography having a thin oxidized metal membrane supported on an annular silicon base. The method consists of the following steps: (a) deposition of a metal layer on a silicon wafer; (b) oxidation of the metal layer to form a continuous thin oxide layer; (c) etching selectively a portion of the backside of said substrate, obtaining a thin membrane of oxidized metal at the etched portion; and (d) obtaining a pattern delineation through a photoresist on said membrane framed by the silicon substrate. A most preferred deposited metal is aluminum which is converted to aluminum oxide. Then a portion of the silicon substrate is removed in order to expose the aluminum oxide membrane attached to the remaining silicon substrate. The mask prepared according to the present invention does not suffer from any distortion and preserves its accuracy even under the stresses incurred during the mask preparation and use.
摘要:
The present invention relates to a method for the electrodeposition of an ordered alloy structured in alternate discrete layers said alloys possessing high elastic modulus and adjustable magnetic susceptibility. According to the invention, the electrodeposition of at least two metals, characterized by a redox potential gap of at least 0.1 V between said metals, is obtained by the pulse plating technique with a frequency in the range of 0.02 Hertz to 15 Hertz. The concentrations of the noblest metal in the electrodeposition solution should be in the range of 0.001M to 2.0M while that of the less noble metal is about its saturation at room temperature. The discrete layers obtained according to the method are less than 90 Angstroms thickness, being substantially pure. Examples of the metals to be electrodeposited according to the invention are copper-nickel; copper-palladium; nickel-gold; copper-nickel-iron and corresponding alloys with cobalt or iron replacing nickel.
摘要:
A process is described for treating palladium and palladium alloys so as to render them ductile and wear resistant. The process involves an electrochemical treatment which is relatively easy to carry out and is suitable for commerical use. Palladium surfaces and films treated with this process are quite suitable for a variety of applications including electrical contact applications as in switches, relays, connectors, etc.
摘要:
A method for immersing a substrate into a plating solution. In one embodiment, the method includes applying a first waveform to the substrate as the substrate is being immersed into the plating solution, stopping the application of the first waveform to the substrate as soon as the substrate is fully immersed inside the plating solution, and applying a second waveform to the substrate prior to the substrate being situated into a plating position.
摘要:
Texturing a semiconductor material using negative potential dissolution (NPD), by applying highly negative (cathodic) potentials during conditions of wet etching, and a textured semiconductor material formed therefrom. Semiconductor material is subjected to wet etching conditions, negative biasing at more negative than −60 V, and, specifically controlled and directed illumination by optically processed non-ambient light, resulting in significant increase in values of cathodic current density, and, rate and extent of texturing, of the semiconductor material as a function of time. As cut unpolished semiconductor material is subjected to wet etching conditions and negative biasing, during non-specifically controlled and directed illumination by unprocessed ambient light. Illumination of the as cut unpolished semiconductor material is not needed for increasing values of cathodic current density, and, rate and extent of the texturing, and therefore, upon type of textured as cut unpolished semiconductor material formed therefrom. Particularly applicable to manufacturing solar cells from semiconductor materials.
摘要:
Methods and apparatus are provided for forming a metal or metal silicide layer by an electroless deposition technique. In one aspect, a method is provided for processing a substrate including depositing an initiation layer on a substrate surface, cleaning the substrate surface, and depositing a conductive material on the initiation layer by exposing the initiation layer to an electroless solution. The method may further comprise etching the substrate surface with an acidic solution and cleaning the substrate of the acidic solution prior to depositing the initiation layer. The initiation layer may be formed by exposing the substrate surface to a noble metal electroless solution or a borane-containing solution. The conductive material may be deposited with a borane-containing reducing agent. The conductive material may be used as a passivation layer, a barrier layer, a seed layer, or for use in forming a metal silicide layer.