摘要:
A magnetic nonvolatile memory cell includes a C-MOSFET, a spin torque magnetization inversion layer and a tunneling magnetoresistive layer arranged in this order. The memory cell has the function of spin torque magnetization inversion and consumes very low power. A random access memory includes a plurality of the memory cells.
摘要:
A magnetic nonvolatile memory cell includes a C-MOSFET, a spin torque magnetization inversion layer and a tunneling magnetoresistive layer arranged in this order. The memory cell has the function of spin torque magnetization inversion and consumes very low power. A random access memory includes a plurality of the memory cells.
摘要:
Manufacturing processes for phase change memory have suffered from the problem of chalcogenide material being susceptible to delamination, since this material exhibits low adhesion to high melting point metals and silicon oxide films. Furthermore, chalcogenide material has low thermal stability and hence tends to sublime during the manufacturing process of phase change memory. According to the present invention, conductive or insulative adhesive layers are formed over and under the chalcogenide material layer to enhance its delamination strength. Further, a protective film made up of a nitride film is formed on the sidewalls of the chalcogenide material layer to prevent sublimation of the chalcogenide material layer.
摘要:
With a high-speed nonvolatile phase change memory, reliability in respect of the number of refresh times is enhanced. In a memory cell forming area of a phase change memory using a MISFET as a transistor for selection of memory cells, a phase change material layer of a memory cell comprising a resistor element, using a phase change material, is formed for common use. As a result, variation in shape and a change in composition of the phase change material, caused by isolation of memory cell elements by etching, are reduced, thereby enhancing reliability of memory cells, in respect of the number of refresh times.
摘要:
A phase-change memory for employing chalcogenide as a recording medium is disclosed, which prevents the read disturbance from being generated, and reads data at high speed. In a phase-change memory cell array including a selection transistor and chalcogenide, a substrate potential of the selection transistor is isolated in a direction perpendicular to the word lines. During the data recording, a forward current signal flows between the substrate and the source line connected to chalcogenide, and the selection transistor is not used. During the data reading, a desired cell is selected by the selection transistor. Therefore, a recording voltage is greatly higher than the reading voltage, such that the occurrence of read disturbance is prevented, and a high-speed operation is implemented.
摘要:
A phase change memory device is provided which is constituted by memory cells using memory elements and select transistors and having high heat resistance to be capable of an operation at 140 degrees or higher. As a device configuration, a recording layer of which, of Zn—Ge—Te, content of Zn, Cd or the like is 20 atom percent or more, content of at least one element selected from the group consisting of Ge and Sb is less than 40 atom percent, and content of Te is 40 atom percent or more is used. It is thereby possible to implement the memory device usable for an application which may be performed at a high temperature such as an in-vehicle use.
摘要:
A phase-change memory for employing chalcogenide as a recording medium is disclosed, which prevents the read disturbance from being generated, and reads data at high speed. In a phase-change memory cell array including a selection transistor and chalcogenide, a substrate potential of the selection transistor is isolated in a direction perpendicular to the word lines. During the data recording, a forward current signal flows between the substrate and the source line connected to chalcogenide, and the selection transistor is not used. During the data reading, a desired cell is selected by the selection transistor. Therefore, a recording voltage is greatly higher than the reading voltage, such that the occurrence of read disturbance is prevented, and a high-speed operation is implemented.
摘要:
A semiconductor memory device includes a vertical MISFET having a source region, a channel forming region, a drain region, and a gate electrode formed on a sidewall of the channel forming region via a gate insulating film. In manufacturing the semiconductor memory device, the vertical MISFET in which leakage current (off current) is less can be realized by: counter-doping boron of a conductivity type opposite to that of phosphorus diffused into a poly-crystalline silicon film (10) constituting the channel forming region from an n type poly-crystalline silicon film (7) constituting the source region of the vertical MISFET, and the above-mentioned poly-crystalline silicon film (10); and reducing an effective impurity concentration in the poly-crystalline silicon film (10).
摘要:
Manufacturing processes for phase change memory have suffered from the problem of chalcogenide material being susceptible to delamination, since this material exhibits low adhesion to high melting point metals and silicon oxide films. Furthermore, chalcogenide material has low thermal stability and hence tends to sublime during the manufacturing process of phase change memory. According to the present invention, conductive or insulative adhesive layers are formed over and under the chalcogenide material layer to enhance its delamination strength. Further, a protective film made up of a nitride film is formed on the sidewalls of the chalcogenide material layer to prevent sublimation of the chalcogenide material layer.
摘要:
A capacitor consisting of a storage electrode (19), a capacitor dielectric film (20) and a plate electrode (21) is formed in a trench formed through dielectric films (6, 8, 10 and 12) stacked on a semiconductor substrate (1) and buried wiring layers (9 and 11) are formed under the capacitor. As the capacitor is formed not in the semiconductor substrate but over it, there is room in area in which the capacitor can be formed and the difficultly of forming wiring is reduced by using the wiring layers (9 and 11) for a global word line and a selector line. As the upper face of an dielectric film (32) which is in contact with the lower face of wiring (34) in a peripheral circuit area is extended into a memory cell area and is in contact with the side of the capacitor (33), step height between the peripheral circuit area and the memory cell area is remarkably reduced.