摘要:
The present invention provides systems, methods and apparatus for depositing titanium films at rates up to 200 .ANG./minute on semiconductor substrates from a titanium tetrachloride source. In accordance with an embodiment of the invention, a ceramic heater assembly with an integrated RF plane for bottom powered RF capability allows PECVD deposition at a temperature of at least 400.degree. C. for more efficient plasma treatment. A thermal choke isolates the heater from its support shaft, reducing the thermal gradient across the heater to reduce the risk of breakage and improving temperature uniformity of the heater. A deposition system incorporates a flow restrictor ring and other features that allow a 15 liters/minute flow rate through the chamber with minimal backside deposition and minimized deposition on the bottom of the chamber, thereby reducing the frequency of chamber cleanings, and reducing clean time and seasoning. Deposition and clean processes are also further embodiments of the present invention.
摘要:
The present invention provides systems, methods and apparatus for depositing titanium films at rates up to 200 .ANG./minute on semiconductor substrates from a titanium tetrachloride source. In accordance with an embodiment of the invention, a ceramic heater assembly with an integrated RF plane for bottom powered RF capability allows PECVD deposition at a temperature of at least 400.degree. C. for more efficient plasma treatment. A thermal choke isolates the heater from its support shaft, reducing the thermal gradient across the heater to reduce the risk of breakage and improving temperature uniformity of the heater. A deposition system incorporates a flow restrictor ring and other features that allow a 15 liters/minute flow rate through the chamber with minimal backside deposition and minimized deposition on the bottom of the chamber, thereby reducing the frequency of chamber cleanings, and reducing clean time and seasoning. Deposition and clean processes are also further embodiments of the present invention.
摘要:
The present invention provides systems, methods and apparatus for depositing titanium films at rates up to 200 Å/minute on semiconductor substrates from a titanium tetrachloride source. In accordance with an embodiment of the invention, a ceramic heater assembly with an integrated RF plane for bottom powered RF capability allows PECVD deposition at a temperature of at least 400° C. for more efficient plasma treatment. A thermal choke isolates the heater from its support shaft, reducing the thermal gradient across the heater to reduce the risk of breakage and improving temperature uniformity of the heater. A deposition system incorporates a flow restrictor ring and other features that allow a 15 liters/minute flow rate through the chamber with minimal backside deposition and minimized deposition on the bottom of the chamber, thereby reducing the frequency of chamber cleanings, and reducing clean time and seasoning. Deposition and clean processes are also further embodiments of the present invention.
摘要:
A substrate processing chamber, particularly a chemical vapor deposition (CVD) chamber used both for thermal deposition of a conductive material and a subsequently performed plasma process. The invention reduces thermal deposition of the conductive material on peripheral portions of the pedestal supporting a wafer and in a pumping channel exhausting the chamber. A peripheral ring placed on the pedestal, preferably also used to center the wafer, is thermally isolated from the pedestal so that its temperature is kept substantially lower than that of the wafer. Despite its thermal isolation, the peripheral ring is electrically connected to the pedestal to prevent arcing. The pumping channel is lined with various elements, some of which are electrically floating and which are designed so that conductive material deposited on these elements do not deleteriously affect a plasma generated for processing the wafer.
摘要:
A substrate processing chamber, particularly a chemical vapor deposition (CVD) chamber used both for thermal deposition of a conductive material and a subsequently performed plasma process. The invention reduces thermal deposition of the conductive material in a pumping channel exhausting the chamber. The pumping channel is lined with various elements, some of which are electrically floating and which are designed so that conductive material deposited on these elements do not deleteriously affect a plasma generated for processing the wafer.
摘要:
A method of depositing titanium nitride by chemical vapor deposition in a chamber having several design features directed to the conductive nature of titanium nitride, particularly when a plasma treatment step is performed after the thermal deposition of the film. Preferably, during the post-deposition plasma treatment, RF power is applied only to the showerhead counter-electrode and none to the pedestal supporting the wafer, thereby preventing charging of the wafer.
摘要:
The present invention provides an approach which provides an increase in the number of usable substrates with a film, such as titanium nitride, deposited thereon at a sufficient deposition rate and where the film meets uniformity and resistivity specifications as well as providing good step coverage. In accordance with an embodiment, the present invention provides an apparatus for substrate processing. The apparatus circulates a heat exchange medium through a passage in a chamber body of a vacuum chamber, and heats a heater pedestal having a surface for supporting the substrate to a heater temperature. The heat exchange medium has a heat exchange temperature of about 60.degree. C. or less. The the apparatus also flows a gas into the chamber at a flow rate to deposit a film on a substrate, where the flow rate provides an effective temperature of the substrate lower than the heater temperature and where the film meets uniformity and resistance specifications after deposition onto a number of substrates. This number is less than twenty-five, in some embodiments, and less than ten in other embodiments. The use of the present invention thus avoids the discarding of the initial hundreds of processed substrates not meeting specifications that is typically experienced with the prior art processes.
摘要:
The present invention provides systems, methods and apparatus for depositing titanium films at rates up to 200 .ANG./minute on semiconductor substrates from a titanium tetrachloride source. In accordance with an embodiment of the invention, a ceramic heater assembly with an integrated RF plane for bottom powered RF capability allows PECVD deposition at a temperature of at least 400.degree. C. for more efficient plasma treatment. A thermal choke isolates the heater from its support shaft, reducing the thermal gradient across the heater to reduce the risk of breakage and improving temperature uniformity of the heater. A deposition system incorporates a flow restrictor ring and other features that allow a 15 liters/minute flow rate through the chamber with minimal backside deposition and minimized deposition on the bottom of the chamber, thereby reducing the frequency of chamber cleanings, and reducing clean time and seasoning. Deposition and clean processes are also further embodiments of the present invention.
摘要:
The present invention provides systems, methods and apparatus for depositing titanium films at rates up to 200 .ANG./minute on semiconductor substrates from a titanium tetrachloride source. In accordance with an embodiment of the invention, a ceramic heater assembly with an integrated RF plane for bottom powered RF capability allows PECVD deposition at a temperature of at least 400.degree. C. for more efficient plasma treatment. A thermal choke isolates the heater from its support shaft, reducing the thermal gradient across the heater to reduce the risk of breakage and improving temperature uniformity of the heater. A deposition system incorporates a flow restrictor ring and other features that allow a 15 liters/minute flow rate through the chamber with minimal backside deposition and minimized deposition on the bottom of the chamber, thereby reducing the frequency of chamber cleanings, and reducing clean time and seasoning. Deposition and clean processes are also further embodiments of the present invention.
摘要:
The present invention provides systems, methods and apparatus for heating substrates in a processing chamber to temperatures up to at least 700.degree. C. In accordance with an embodiment of the invention a heater assembly with an inner core of high thermal conductivity is encased in a shell of lower thermal conductivity, creating a nearly isothermal interface between the core and shell. The inner core is brazed to the shell, promoting thermal transfer, and acts as a thermal short between opposing surfaces of the shell. The heater assembly is designed to minimize thermal stresses arising from the difference in the thermal expansion coefficients of the various components of the multi-layered heater assembly. In one embodiment of the invention, two independently-powered heating elements are arranged concentrically to each other to create a dual zone heater. A thermal gap in the inner core between the inner and outer heating elements de-couples the zones and provides a more controllable temperature profile at the surface of the heater, including excellent temperature uniformity. In one embodiment, an RF isolator is placed between a heater and a support shaft, allowing the heater to be powered as an electrode in a plasma process.