摘要:
In the methods of compensating for an alignment error during fabrication of structures on semiconductor substrates, a conductive pattern structure is formed at a first position on a first semiconductor substrate. The conductive pattern structure includes a grid of first and second conductive patterns arranged as columns and intersecting rows with openings bounded therebetween. A first conductive contact structure overlaps the conductive pattern structure, and includes a plurality of spaced apart conductive contacts arranged as a grid of rows and columns that can be tilted at a non-zero angle relative to the grid of the conductive pattern structure. A determination is made as to whether the first conductive contact structure is electrically connected to the conductive pattern structure. A second conductive contact structure is formed at a position on a second semiconductor substrate that is determined in response to the determination of whether the first conductive contact structure is electrically connected to the conductive pattern structure.
摘要:
In the methods of compensating for an alignment error during fabrication of structures on semiconductor substrates, a conductive pattern structure is formed at a first position on a first semiconductor substrate. The conductive pattern structure includes a grid of first and second conductive patterns arranged as columns and intersecting rows with openings bounded therebetween. A first conductive contact structure overlaps the conductive pattern structure, and includes a plurality of spaced apart conductive contacts arranged as a grid of rows and columns that can be tilted at a non-zero angle relative to the grid of the conductive pattern structure. A determination is made as to whether the first conductive contact structure is electrically connected to the conductive pattern structure. A second conductive contact structure is formed at a position on a second semiconductor substrate that is determined in response to the determination of whether the first conductive contact structure is electrically connected to the conductive pattern structure.
摘要:
In an embodiment, a method of scanning a substrate, and a method and an apparatus for analyzing crystal characteristics are disclosed. A sequential scan on the scan areas using a first electron beam and a second electron beam are repeatedly performed. The electrons accumulated in the scan areas by the first electron beam are removed from the scan areas by the second electron beam. When a size of the scan area is substantially the same as a spot size of the first electron beam, adjacent scan areas partially overlap each other. When each of the scan areas is larger than a spot size of the first electron beam, the adjacent scan areas do not overlap each other. Images of the scan areas are generated using back-scattered electrons emitted from each of the scan areas by irradiating the first electron beam to analyze crystal characteristics of circuit patterns on the substrate.
摘要:
In an embodiment of a method of inspecting a substrate, the substrate on which minute structures are formed is divided into a plurality of inspection regions. A main inspection region among the inspection regions is selected. A main image of the main inspection region and sub-images of sub-inspection regions adjacent to the main inspection region are obtained. An average image of the main image and the sub-images is obtained. The average image is then compared with the main image to detect defects in the main inspection region. Gray levels may be used. The average image may have improved quality so that the defects in the selected inspection region may be rapidly and accurately detected. This process has an improved reliability. Further, the number of inspecting processes for the substrate may be reduced. And a line for the inspection process may be automated so that a worker-free line may be established.
摘要:
In an embodiment of a method of inspecting a substrate, the substrate on which minute structures are formed is divided into a plurality of inspection regions. A main inspection region among the inspection regions is selected. A main image of the main inspection region and sub-images of sub-inspection regions adjacent to the main inspection region are obtained. An average image of the main image and the sub-images is obtained. The average image is then compared with the main image to detect defects in the main inspection region. Gray levels may be used. The average image may have improved quality so that the defects in the selected inspection region may be rapidly and accurately detected. This process has an improved reliability. Further, the number of inspecting processes for the substrate may be reduced. And a line for the inspection process may be automated so that a worker-free line may be established.
摘要:
A surface inspection apparatus and method increase wafer productivity, wherein to increase an efficiency of the surface inspection apparatus to detect defects during a scanning of the wafer surface, a scanning speed for a subsequent defect detection is varied according to an increase/decrease of defect density represented on a plurality of images acquired successively. When the density of defects is reduced, the scanning speed increases and a level of a skip rule increases, and when the density of defects increases, the scanning speed decreases and a level of the skip rule decreases to precisely detect defects, thereby increasing reliability, throughput, and productivity.
摘要:
A surface inspection apparatus and method increase wafer productivity, wherein to increase an efficiency of the surface inspection apparatus to detect defects during a scanning of the wafer surface, a scanning speed for a subsequent defect detection is varied according to an increase/decrease of defect density represented on a plurality of images acquired successively. When the density of defects is reduced, the scanning speed increases and a level of a skip rule increases, and when the density of defects increases, the scanning speed decreases and a level of the skip rule decreases to precisely detect defects, thereby increasing reliability, throughput, and productivity.
摘要:
Electron-beam generators have wide area and directional beam generation capability. The generators include anode and cathode electrodes, which are disposed in spaced-apart and opposing relationship relative to each other. A clustered carbon nanotube array is provided to support the wide area and directional beam generation. The clustered nanotube array extends between the anode and cathode electrodes. The nanotube array also has a wide area emission surface thereon, which extends opposite a primary surface of the anode electrode. The clustered nanotube array is configured so that nanotubes therein provide conductive channels for electrons, which pass from the cathode electrode to the anode electrode via the emission surface.
摘要:
A substrate measuring apparatus includes a reference value storage unit, an electron irradiator, a current measuring device, and a property value calculating device. The reference value storage unit stores data on the relationship between current flow in a sample substrate with a contact hole of known characteristics that is irradiated by an electron beam. The current measuring device measures current flow in a test substrate. The property value calculating device calculates the property value of the contact hole formed in a material layer of the test substrate using the current flow in the test substrate and the data stored in the reference value storage unit. The property values of the contact hole may be a surface area of underlying substrate exposed by a contact hole or an amount of residual material remaining in the contact hole.