摘要:
A semiconductor laser device with an active layer having a multi-quantum well structure including more than one well layer and more than one barrier layer and having a cavity length of more than 800 μm is disclosed, wherein the active layer includes a doped region which includes at least one well layer and at least one barrier layer adjacent to the well layer. The entire active region, comprising all of the well and active layers may be doped. Adjacent to the active layer are upper and lower optical confinement layers falls having a thickness within a range of from about 20 to about 50 nm. A optical fiber amplifier incorporating the semiconductor laser is also disclosed, including the semiconductor laser device sealed within a package disposed over a cooler, and wherein a light incidence facet of an optical fiber is optically coupled to the optical output power facet of the semiconductor laser device.
摘要:
A semiconductor device of the invention is formed so that n-type InP current blocking layers enter the inside of p-type InP cladding layers, i.e., the n-type current blocking layers ride over the upper part of the p-type InP cladding layers, so that a distance between the n-type InP current block layers composing a current blocking region is narrower than a width of the p-type cladding layers contacting with the n-type InP current blocking layers. Thereby, the semiconductor device whose leak current in the current blocking region may be reduced which permits high-output and high-temperature operations may be readily fabricated.
摘要:
A semiconductor device of the invention is formed so that n-type InP current blocking layers enter the inside of p-type InP cladding layers, i.e., the n-type current blocking layers ride over the upper part of the p-type InP cladding layers, so that a distance between the n-type InP current block layers composing a current blocking region is narrower than a width of the p-type cladding layers contacting with the n-type InP current blocking layers. Thereby, the semiconductor device whose leak current in the current blocking region may be reduced which permits high-output and high-temperature operations may be readily fabricated.
摘要:
A semiconductor laser device which has a diffraction grating partially provided in the vicinity of an active layer formed between a radiation-side reflection film provided on a radiation-side end surface of a laser beam and a reflection film provided on a reflection-side end surface of the laser beam, and which outputs a laser beam having a desired oscillation longitudinal mode based on a wavelength selection characteristic of at least the diffraction grating. The diffraction grating is formed in isolation with an isolation distance of Ls=15 μm from the radiation-side reflection film.
摘要:
A diffraction grating is provided in the vicinity of a GRIN-SCH-MQW active layer formed between a radiation side reflection coating provided on a radiation end face of a laser beam and a reflection coating provided on a reflection end face of the laser beam, and on the radiation side reflection coating side. An n-InP layer which covers the upper part of the diffraction grating is also provided, so that the current from the p-side electrode is prevented from being injected to the vicinity of the diffraction grating by the n-InP layer. An n-InPGaAsP diffusion prevention layer forms a non-current injection area so as to suppress alloying with the p-side electrode.
摘要:
A semiconductor laser device which has a diffraction grating partially provided in the vicinity of an active layer formed between a radiation-side reflection film provided on a radiation-side end surface of a laser beam and a reflection film provided on a reflection-side end surface of the laser beam, and which outputs a laser beam having a desired oscillation longitudinal mode based on a wavelength selection characteristic of at least the diffraction grating. The diffraction grating is formed in isolation with an isolation distance of Ls=15 μm from the radiation-side reflection film.
摘要:
When manufacturing semiconductor elements, a group of semiconductor elements having a diffraction grating formed partly on the side of the facet from which laser light is emitted is formed collectively on a semiconductor wafer by using semiconductor process technologies. The semiconductor laser elements are arranged such that the light emitting facets are opposite to each other to thereby form each diffraction grating of the semiconductor laser elements arranged opposite to each other as one diffraction grating, cleaving this diffraction grating at respective cleavage planes to cut out laser bars, followed by the cleavage of cleavage planes to cut out semiconductor laser elements.
摘要:
Provided is a method of manufacturing a semiconductor laser element for collectively forming semiconductor laser elements having diffraction grating partially provided at least on the side of laser light emitting end surface or laser light reflection end surface side using a semiconductor process technique. The method comprises the step of performing electron beam exposure or ion beam exposure for drawing only on a diffraction grating region on which said diffraction grating is provided in correspondence with a pattern of said diffraction grating, and masking the diffraction grating region and exposing a region other than said diffraction grating region with light or X-rays.