Abstract:
Provided is an imprint apparatus that applies a resin (drops) dispersed at a plurality of locations on a substrate, brings the resin and a mold into contact, and transfers the contoured pattern that is formed in the mold to the resin comprising: a controller that sets a principal axis direction according to the contoured pattern and an array direction in which a plurality of resin drops are aligned, and determines application positions for the resin such that the array direction is angled with respect to the principal axis direction; and a dispenser that applies the resin based on the application positions that have been determined.
Abstract:
A near-field exposure mask according to an embodiment includes: a substrate; a concave-convex structure having convexities and concavities and formed on one surface of the substrate; a near-field light generating film arranged at least on a tip portion of each of the convexities, the near-field light generating film being a layer containing at least one element selected from the group consisting of Au, Al, Ag, Cu, Cr, Sb, W, Ni, In, Ge, Sn, Pb, Zn, Pd, and C, or a film stack formed with layers made of some of those materials; and a resin filled in each of the concavities.
Abstract:
A near-field exposure mask according to an embodiment includes: a silicon substrate; and a near-field light generating unit that is formed on the silicon substrate, the near-field light generating unit being a layer containing at least one element selected from the group consisting of Au, Al, Ag, Cu, Cr, Sb, W, Ni, In, Ge, Sn, Pb, Zn, Pd, and C, or a film stack formed with layers made of some of those materials.
Abstract:
According to one embodiment, a fine processing method includes determining a resist amount required for each first region of a pattern formation surface and a total amount of resist. The method include dividing the total amount of resist by a volume of one resist drop to determine the resist drops total number. The method include determining a provisional position for the resist drop of the total number. The method include assigning the each first region to nearest one resist drop, and partitioning again the pattern formation surface into second regions assigned to the each resist drop. The method include determining a divided value by dividing the volume of the one resist drop by the required total amount of resist determined. The method include finalizing a final position of the each resist drop, if a distribution of the divided value in the pattern formation surface falls within a target range.
Abstract:
Provided is an imprint apparatus that applies a resin to several locations on a substrate, brings the resin and a mold into contact, and transfers a contoured pattern formed in the mold to the resin, comprising: a controller that sets a principal axis direction according to the contoured pattern and determines the application positions of the resin based on the principal axis direction that has been set such that the distances between resin drops that have been applied so as to be separated in the principal axis direction is larger than the distances between resin drops that have been applied so as to be separated in a direction that is perpendicular to the principal axis direction; and a dispenser that applies the resin based on the application position that has been determined.
Abstract:
Provided is an imprint apparatus that applies a resin (drops) dispersed at a plurality of locations on a substrate, brings the resin and a mold into contact, and transfers the contoured pattern that is formed in the mold to the resin comprising: a controller that sets a principal axis direction according to the contoured pattern and an array direction in which a plurality of resin drops are aligned, and determines application positions for the resin such that the array direction is angled with respect to the principal axis direction; and a dispenser that applies the resin based on the application positions that have been determined.
Abstract:
Provided is an imprint apparatus that applies a resin to several locations on a substrate, brings the resin and a mold into contact, and transfers a contoured pattern formed in the mold to the resin, comprising: a controller that sets a principal axis direction according to the contoured pattern and determines the application positions of the resin based on the principal axis direction that has been set such that the distances between resin drops that have been applied so as to be separated in the principal axis direction is larger than the distances between resin drops that have been applied so as to be separated in a direction that is perpendicular to the principal axis direction; and a dispenser that applies the resin based on the application position that has been determined.
Abstract:
According to an aspect of the present invention, there is provided a pattern forming apparatus in which a mold having a pattern is brought into contact with an imprinting material on a substrate to transfer the pattern, the apparatus including: a holding part configured to hold the mold; a moving part configured to move the holding part so that the mold is brought into contact with the imprinting material on the substrate and that the mold is removed therefrom; and a control part configured to control so that at least one of conditions of removing the mold can be changed based on conditions of the pattern formed in the mold, the conditions including a rate and an angle of removing the mold.
Abstract:
A near-field exposure mask according to an embodiment includes: a substrate; a concave-convex structure having convexities and concavities and formed on one surface of the substrate; a near-field light generating film arranged at least on a tip portion of each of the convexities, the near-field light generating film being a layer containing at least one element selected from the group consisting of Au, Al, Ag, Cu, Cr, Sb, W, Ni, In, Ge, Sn, Pb, Zn, Pd, and C, or a film stack formed with layers made of some of those materials; and a resin filled in each of the concavities.
Abstract:
An imprint pattern forming method includes contacting a template with a pattern in a front surface with an imprint material formed in a substrate to fill the imprint material into the pattern, curing the imprint material filled in the pattern to form an imprint material pattern, and after forming the imprint material pattern, separating the template from the imprint material pattern while applying pressure to the back surface of the template.