摘要:
According to one embodiment, a coating head includes a coating bar, nozzles, a first member, second members, third members, elastic members, and a position controller. The coating bar faces a coating member. The nozzles supply a liquid toward the coating bar. The first member includes first recesses. A portion of the nozzles is between the first recesses and the third members. The portion of the nozzles and the third members are fixed to the first member by the second members. The elastic members are located in at least first, second, or third positions. The first position is between the third members and the second members. The second position is between the portion of the first recesses and the nozzles. The third position is between the portion of the nozzles and the third members. The position controller controls a relative position between the coating bar and the nozzles.
摘要:
An embodiment of the present invention provides a coating method, a coating bar head and a coating apparatus which enables coating in which changes in coating film thickness is less likely to occur, even when performing meniscus coating at a high speed. This coating method is a coating method including: supplying a coating liquid between a coating bar head and a substrate to form a meniscus; and moving the substrate, wherein a cross section of the coating surface of the bar head in the direction of coating, is a convex curve, and has bending points at both ends of the curve.
摘要:
The embodiments provide a process and an apparatus for easily producing a transparent electrode of low resistance and of high transparency. The process comprises: coating a hydrophobic polymer film with a dispersion of metal nanowires, press-bonding an electroconductive substrate directly onto the metal nanowires on the polymer film, and peeling and transferring the metal nanowires from the polymer film onto the conductive substrate. The embodiments also relates to an apparatus for the process.
摘要:
A near-field exposure mask according to an embodiment includes: a substrate; a concave-convex structure having convexities and concavities and formed on one surface of the substrate; a near-field light generating film arranged at least on a tip portion of each of the convexities, the near-field light generating film being a layer containing at least one element selected from the group consisting of Au, Al, Ag, Cu, Cr, Sb, W, Ni, In, Ge, Sn, Pb, Zn, Pd, and C, or a film stack formed with layers made of some of those materials; and a resin filled in each of the concavities.
摘要:
The embodiment provides a transparent electrode having low resistance and high stability against impurities such as halogen and sulfur, a method of producing the transparent electrode, and an electronic device using the transparent electrode. A transparent electrode according to an embodiment includes a transparent substrate and a plurality of conductive regions disposed on a surface of the transparent substrate and separated from each other by a separation region, wherein the conductive region has a structure in which a first transparent conductive metal oxide layer, a metal layer, and a second transparent conductive metal oxide layer are laminated in this order from the substrate side, and in the separation region, there is disposed a trapping material. This transparent electrode can be produced by scribing the conductive region to form a separation region, and then using a halide or a sulfur compound.
摘要:
The embodiments provide a process for easily producing an electrode having low resistance, easily subjected to post-process and hardly impairing the device; and also provide, as its application, a production process for a photoelectric conversion device. The process comprises the steps of: coating a hydrophobic substrate directly with a dispersion of metal nanomaterial, to form a metal nanomaterial layer, coating the surface of the metal nanomaterial layer with a dispersion of carbon material, to form a carbon material layer and thereby to form an electrode layer comprising a laminate of the metal nanomaterial layer and the carbon material layer, pressing the carbon material layer onto a hydrophilic substrate so that the surface of the carbon material layer may be directly fixed on the hydrophilic substrate, and peeling away the hydrophobic substrate so as to transfer the electrode layer onto the hydrophilic substrate.
摘要:
A near-field exposure mask according to an embodiment includes: a silicon substrate; and a near-field light generating unit that is formed on the silicon substrate, the near-field light generating unit being a layer containing at least one element selected from the group consisting of Au, Al, Ag, Cu, Cr, Sb, W, Ni, In, Ge, Sn, Pb, Zn, Pd, and C, or a film stack formed with layers made of some of those materials.
摘要:
A near-field exposure mask according to an embodiment includes: a substrate; a concave-convex structure having convexities and concavities and formed on one surface of the substrate; a near-field light generating film arranged at least on a tip portion of each of the convexities, the near-field light generating film being a layer containing at least one element selected from the group consisting of Au, Al, Ag, Cu, Cr, Sb, W, Ni, In, Ge, Sn, Pb, Zn, Pd, and C, or a film stack formed with layers made of some of those materials; and a resin filled in each of the concavities.
摘要:
The present embodiments provide a transparent electrode having a laminate structure of: a metal oxide layer having an amorphous structure and electroconductivity, and a metal nanowire layer; and further comprising an auxiliary metal wiring. The auxiliary metal wiring covers a part of the metal nanowire layer or of the metal oxide layer, and is connected to the metal nanowire layer.
摘要:
The embodiments provide a method making it possible to safely and inexpensively measure concentrations of combustible gases, such as methanol, at room temperature even in high concentration atmospheres, and also provide a sensor making it possible to carry out the above measurement method. The measurement method comprises: arranging a film containing nanoparticles of tungsten oxide and a pair of electrodes which are separated from each other and which individually keep in contact with said film in said atmosphere, exposing said film to light, measuring electric resistance change of said film before and after exposing said film to light, and determining said concentration based on said change.