Abstract:
Provided is an apparatus that includes a nerve conduit, a manifold and a support structure for providing a reduced pressure. Also provided is a system that includes a source of reduced pressure, a nerve conduit, a manifold, a support structure and a conduit for providing fluid communication between the manifold support and the source of reduced pressure. Additionally provided is a method that includes implanting the above nerve conduit, manifold and support structure at a site of damaged nerve tissue and applying a reduced pressure to the manifold thereby stimulating repair or regrowth of nerve tissue.
Abstract:
Systems, methods, and apparatuses are presented that involve forming patterns on neo-epithelium that allow increased functionality and may more nearly resemble the original epithelium. In one instance, a patterned neo-epithelium dressing for treating a tissue site having granulation tissue includes an interface member for placing proximate the granulation tissue and a plurality of three-dimensional features formed on a second, patient-facing side of the interface member. Other systems, methods, and apparatuses are disclosed.
Abstract:
A reduced pressure delivery system for applying reduced pressure tissue treatment to a tissue site is provided. The system includes a manifold delivery tube and a balloon having an inner space. The balloon is capable of assuming collapsed and expanded positions. The system further includes a manifold having a plurality of flow channels. The manifold is disposed within the inner space of the balloon. A sharp tip is configured to be delivered within the manifold delivery tube to puncture the balloon.
Abstract:
Methods, dressings, and systems for promoting epithelialization of a wound or other tissue are presented. The methods, dressings, and systems help form simulated rete pegs. In one instance, an epithelialization dressing is disclosed that may include a dressing body having a plurality of projections. A plurality of apertures is formed on a portion of the dressing body. The dressing helps manage fluids on the wound and the projections form cavities into which epithelial tissue migrates to from epithelial columns that function like rete pegs. Other dressings, methods, and systems are disclosed.
Abstract:
Provided are drainage systems that may include a drainage manifold and may be suitable for draining fluid from a tissue site. The drainage manifold may include a plurality of elongate members having a moveable end that may be adapted to configure the drainage manifold to treat a uniquely shaped tissue site. The drainage manifold may be coupled to a drainage tube with a transitional connector to provide a drainage system capable of distributing reduced pressure to the tissue site to enhance the drainage of fluids.
Abstract:
An apparatus, system, and method for treating an incisional wound having incisional walls is disclosed. The apparatus includes a conduit having a first end for receiving reduced pressure and a second end. The apparatus further includes a scaffold. The scaffold has opposing surfaces for positioning adjacent the incisional walls and is fluidly coupled to the second end of the conduit for receiving the reduced pressure. The scaffold is generally elongated in shape and has a thickness between the opposing surfaces that is sufficiently thin for positioning within the incisional wound. The apparatus further includes an internal manifold that has a primary flow channel extending generally longitudinally within the scaffold and between the opposing surfaces of the scaffold. The internal manifold is fluidly coupled to the second end of the conduit. The application of the reduced pressure through the scaffold and the internal manifold induces tissue apposition between the incisional walls.
Abstract:
A reduced pressure delivery system for applying reduced pressure tissue treatment to a tissue site is provided. The system includes a manifold delivery tube and a balloon having an inner space. The balloon is capable of assuming collapsed and expanded positions. The system further includes a manifold having a plurality of flow channels. The manifold is disposed within the inner space of the balloon. A sharp tip is configured to be delivered within the manifold delivery tube to puncture the balloon.
Abstract:
Methods, dressings, and systems for promoting epithelialization of a wound or other tissue are presented. The methods, dressings, and systems help form simulated rete pegs. In one instance, an epithelialization dressing is disclosed that may include a dressing body having a plurality of projections. A plurality of apertures is formed on a portion of the dressing body. The dressing helps manage fluids on the wound and the projections form cavities into which epithelial tissue migrates to from epithelial columns that function like rete pegs. Other dressings, methods, and systems are disclosed.
Abstract:
Provided is an apparatus that includes a nerve conduit, a manifold and a support structure for providing a reduced pressure. Also provided is a system that includes a source of reduced pressure, a nerve conduit, a manifold, a support structure and a conduit for providing fluid communication between the manifold support and the source of reduced pressure. Additionally provided is a method that includes implanting the above nerve conduit, manifold and support structure at a site of damaged nerve tissue and applying a reduced pressure to the manifold thereby stimulataing repair or regrowth of nerve tissue.
Abstract:
A reduced pressure delivery system for applying reduced pressure tissue treatment to a tissue site is provided. The system includes a manifold delivery tube and a balloon having an inner space. The balloon is capable of assuming collapsed and expanded positions. The system further includes a manifold having a plurality of flow channels. The manifold is disposed within the inner space of the balloon. A sharp tip is configured to be delivered within the manifold delivery tube to puncture the balloon.