Abstract:
Methods and systems for evaluating the performance of multiple patterning processes are presented. Patterned structures are measured and one or more parameter values characterizing geometric errors induced by the multiple patterning process are determined. In some examples, a single patterned target and a multiple patterned target are measured, the collected data fit to a combined measurement model, and the value of a structural parameter indicative of a geometric error induced by the multiple patterning process is determined based on the fit. In some other examples, light having a diffraction order different from zero is collected and analyzed to determine the value of a structural parameter that is indicative of a geometric error induced by a multiple patterning process. In some embodiments, a single diffraction order different from zero is collected. In some examples, a metrology target is designed to enhance light diffracted at an order different from zero.
Abstract:
The system includes a modulatable illumination source configured to illuminate a surface of a sample disposed on a sample stage, a detector configured to detect illumination emanating from a surface of the sample, illumination optics configured to direct illumination from the modulatable illumination source to the surface of the sample, collection optics configured to direct illumination from the surface of the sample to the detector, and a modulation control system communicatively coupled to the modulatable illumination source, wherein the modulation control system is configured to modulate a drive current of the modulatable illumination source at a selected modulation frequency suitable for generating illumination having a selected coherence feature length. In addition, the present invention includes the time-sequential interleaving of outputs of multiple light sources to generate periodic pulses trains for use in multi-wavelength time-sequential optical metrology.
Abstract:
The system includes a modulatable illumination source configured to illuminate a surface of a sample disposed on a sample stage, a detector configured to detect illumination emanating from a surface of the sample, illumination optics configured to direct illumination from the modulatable illumination source to the surface of the sample, collection optics configured to direct illumination from the surface of the sample to the detector, and a modulation control system communicatively coupled to the modulatable illumination source, wherein the modulation control system is configured to modulate a drive current of the modulatable illumination source at a selected modulation frequency suitable for generating illumination having a selected coherence feature length. In addition, the present invention includes the time-sequential interleaving of outputs of multiple light sources to generate periodic pulse trains for use in multi-wavelength time-sequential optical metrology.
Abstract:
The present invention may include a modulatable illumination source configured to illuminate a surface of a sample disposed on a sample stage, a detector configured to detect illumination emanating from a surface of the sample, illumination optics configured to direct illumination from the modulatable illumination source to the surface of the sample, collection optics configured to direct illumination from the surface of the sample to the detector, and a modulation control system communicatively coupled to the modulatable illumination source, wherein the modulation control system is configured to modulate a drive current of the modulatable illumination source at a selected modulation frequency suitable for generating illumination having a selected coherence feature length. In addition, the present invention includes the time-sequential interleaving of outputs of multiple light sources to generate periodic pulses trains for use in multi-wavelength time-sequential optical metrology.
Abstract:
One or more non-zero diffraction orders are selected, and these selected one or more zero or non-zero diffraction orders are selected for eliminating or obtaining corresponding zero or non-zero diffraction order terms or interference term from measurements from a periodic target using an optical metrology tool. The periodic target has a pitch, and the measurements contain a zero diffraction order and one or more non-zero diffraction order terms. Using the optical metrology tool, an incident beam is directed to positions on the target, and the measurements are obtained from the target in response to the incident beam. The measurements are processed to eliminate or obtain each zero or non-zero diffraction order term or interference term associated with each selected zero or non-zero diffraction order, resulting in a processed metrology signal. The positions are shifted from each other so as to cause the zero or non-zero diffraction order term or interference term corresponding to each selected zero or non-zero diffraction order to be eliminated or obtained.
Abstract:
The present invention may include a modulatable illumination source configured to illuminate a surface of a sample disposed on a sample stage, a detector configured to detect illumination emanating from a surface of the sample, illumination optics configured to direct illumination from the modulatable illumination source to the surface of the sample, collection optics configured to direct illumination from the surface of the sample to the detector, and a modulation control system communicatively coupled to the modulatable illumination source, wherein the modulation control system is configured to modulate a drive current of the modulatable illumination source at a selected modulation frequency suitable for generating illumination having a selected coherence feature length. In addition, the present invention includes the time-sequential interleaving of outputs of multiple light sources to generate periodic pulses trains for use in multi-wavelength time-sequential optical metrology.
Abstract:
The system includes a modulatable illumination source configured to illuminate a surface of a sample disposed on a sample stage, a detector configured to detect illumination emanating from a surface of the sample, illumination optics configured to direct illumination from the modulatable illumination source to the surface of the sample, collection optics configured to direct illumination from the surface of the sample to the detector, and a modulation control system communicatively coupled to the modulatable illumination source, wherein the modulation control system is configured to modulate a drive current of the modulatable illumination source at a selected modulation frequency suitable for generating illumination having a selected coherence feature length. In addition, the present invention includes the time-sequential interleaving of outputs of multiple light sources to generate periodic pulse trains for use in multi-wavelength time-sequential optical metrology.
Abstract:
The present invention may include an illumination source, a detector, a selectably adjustable optical system including a dynamically adjustable illumination pupil of the illumination arm, a dynamically adjustable collection pupil of the collection arm, a dynamically adjustable illumination field stop of the illumination arm, a dynamically adjustable collection field stop of the collection arm, a sensor configured to measure one or more optical characteristics of one or more components of the optical system, and a control system configured to selectably dynamically adjust at least one of the illumination pupil, the collection pupil, the illumination field stop, the collection field stop, and a spectral radiance of the illumination source.
Abstract:
Methods and systems for performing simultaneous X-ray Fluorescence (XRF) and small angle x-ray scattering (SAXS) measurements over a desired inspection area of a specimen are presented. SAXS measurements combined with XRF measurements enables a high throughput metrology tool with increased measurement capabilities. The high energy nature of x-ray radiation penetrates optically opaque thin films, buried structures, high aspect ratio structures, and devices including many thin film layers. SAXS measurements of a particular location of a planar specimen are performed at a number of different out of plane orientations. This increases measurement sensitivity, reduces correlations among parameters, and improves measurement accuracy. In addition, specimen parameter values are resolved with greater accuracy by fitting data sets derived from both SAXS and XRF measurements based on models that share at least one material parameter. The fitting can be performed sequentially or in parallel.
Abstract:
The present invention may include an illumination source, a detector, a selectably adjustable optical system including a dynamically adjustable illumination pupil of the illumination arm, a dynamically adjustable collection pupil of the collection arm, a dynamically adjustable illumination field stop of the illumination arm, a dynamically adjustable collection field stop of the collection arm, a sensor configured to measure one or more optical characteristics of one or more components of the optical system, and a control system configured to selectably dynamically adjust at least one of the illumination pupil, the collection pupil, the illumination field stop, the collection field stop, and a spectral radiance of the illumination source.