Abstract:
An embodiment of the invention provides a method for forming a magnesium (Mg)-containing coating layer on the surface of a metal support, which comprises a first step of preparing a precursor solution containing a magnesium component, a second step of forming a precipitate on the surface of a metal support by immersing and aging the metal support in the precursor solution prepared in the first step, and a third step of forming a magnesium-containing coating layer on the surface of the metal support by calcinating the precipitate formed in the second step.
Abstract:
The present invention relates to a catalyst for dehydration of a primary alcohol, a method of preparing the same, and a method of producing an alpha-olefin using the same. The catalyst for dehydration of a primary alcohol according to the present invention has an excellent catalyst stability while having an excellent activity with respect to dehydration, and a high turnover frequency, such that a linear alpha-olefin with high purity may be produced with a high selectivity even in a case where a relatively small amount of a cocatalyst is added as compared with a homogeneous catalyst system.
Abstract:
An embodiment of the present invention provides a method for forming a metal oxide coating layer on a catalyst support, which comprises a precipitation step for forming a metal-containing precipitate on the catalyst support by contacting the catalyst support with a mixed solution containing a metal oxide precursor and a precipitant, and a calcination step for calcinating the metal-containing precipitate produced on the catalyst support to produce the metal oxide coating layer on the catalyst support.
Abstract:
Disclosed are a heat exchange reactor and a method of manufacturing the same, and a method of manufacturing a heat exchange reactor includes: preparing lateral plates provided with a plurality of slits formed in parallel in a longitudinal direction; disposing two lateral plates to be spaced apart from each other while facing each other in a vertical direction; forming a plurality of flow path channels by inserting flow path partition plates into one or more slits of the two lateral plates in a horizontal direction; forming a plurality of flow path channels by inserting printed circuit heat exchange plates, which autonomously include one or more heat exchange flow paths therein, into one or more slits of the two lateral plates in a horizontal direction; and bonding the lateral plates, the flow path partition plates, and the printed circuit heat exchange plates.
Abstract:
The present invention relates to a plate-type heat exchange reactor and a method of manufacturing thereof, and there is provided a method of manufacturing a plate-type heat exchange reactor and a plate-type heat exchange reactor manufactured in the manufacturing method, the method including the steps of preparing side surface plates respectively provided with a plurality of slits formed in parallel along a longitudinal direction; arranging two side surface plates in a vertical direction to face each other with a space therebetween; forming a plurality of fluid passage channels by inserting a plurality of fluid passage partition walls into the slits provided on the two side surface plates in parallel in a horizontal direction; and bonding the side surface plates and the fluid passage partition walls.
Abstract:
The present invention relates to a plate-type heat exchange reactor and a method of manufacturing thereof, and there is provided a method of manufacturing a plate-type heat exchange reactor and a plate-type heat exchange reactor manufactured in the manufacturing method, the method including the steps of preparing side surface plates respectively provided with a plurality of slits formed in parallel along a longitudinal direction; arranging two side surface plates in a vertical direction to face each other with a space therebetween; forming a plurality of fluid passage channels by inserting a plurality of fluid passage partition walls into the slits provided on the two side surface plates in parallel in a horizontal direction; and bonding the side surface plates and the fluid passage partition walls.
Abstract:
Disclosed is a metal complex including: a tin oxide; titanium oxide nanorods in a rutile phase formed on the tin oxide; and titanium oxide nanoparticles in an anatase phase formed on the titanium oxide nanorods in a rutile phase, and a preparation method thereof, and can be used as a catalyst support in various forms.
Abstract:
Disclosed is a metal complex including: a tin oxide; titanium oxide nanorods in a rutile phase formed on the tin oxide; and titanium oxide nanoparticles in an anatase phase formed on the titanium oxide nanorods in a rutile phase, and a preparation method thereof, and can be used as a catalyst support in various forms.