Abstract:
A carbon dioxide conversion system is provided. The carbon dioxide conversion system includes: an ion transfer membrane that separates oxygen in the air; an oxy-fuel combustor that combusts using oxygen that is separated at the ion transfer membrane as an oxidizing agent; and a dry-reformer that converts carbon dioxide that is generated through an oxy-fuel combustion reaction of the oxy-fuel combustor and methane gas that is supplied from the outside to carbon monoxide and hydrogen by a dry-reforming reaction.
Abstract:
The present invention relates to a VOC reduction system and a VOC reduction method that applies pulse type thermal energy to a catalyst to activate the catalyst and oxidizes and removes the VOC.
Abstract:
The present invention relates to a monolith catalyst for a carbon dioxide reforming reaction and to a preparation method for same, and more specifically the invention provides a preparation method for a monolith catalyst for a methane reforming reaction using carbon dioxide, the method comprising a step of mixing and impregnating a support in a metal precursor solution, coating a monolith substrate with the solution resulting from the mixing and impregnating, drying same and then calcining the monolith substrate coated with the solution resulting from the mixing and impregnating.
Abstract:
An object of the present invention is to increase the reduction performance of nitrogen oxides compared to existing three-way catalysts; simultaneously inhibit the emission of ammonia and nitrous oxide; simplify a process by means of a method of further doping an iridium-ruthenium catalyst into a commercial three-way catalyst; and expand the scope of application. The present invention provides a catalyst for simultaneously inhibiting the emission of ammonia and nitrous oxide by doping an iridium-ruthenium catalyst component into a three-way catalyst (TWC), a diesel oxidation catalyst, or a lean NOx trap supported on a honeycomb support.
Abstract:
The present invention provides a solid-phase catalyst for decomposing hydrogen peroxide comprising a permanganate salt and a manganese (II) salt. The solid-phase catalyst stays a solid state in the form of nanoparticles at the time of hydrogen peroxide decomposition, and thus can be recovered for reuse and also has an excellent decomposition rate. In the method for producing a solid-phase catalyst for decomposing hydrogen peroxide according to the present invention, a solid-phase catalyst is produced from a solution containing a permanganate salt, a manganese (II) salt, and an organic acid, so that the produced solid-phase catalyst is precipitated as a solid component even after a catalytic reaction, and thus is reusable and environmentally friendly, and cost reduction can be achieved through the simplification of a catalyst production technique.
Abstract:
The present invention relates to a VOC reduction system and a VOC reduction method that applies pulse type thermal energy to a catalyst to activate the catalyst and oxidizes and removes the VOC.
Abstract:
The present invention relates to a monolith catalyst for carbon-dioxide/methane reforming and a method of manufacturing the same, and more particularly to a novel monolith catalyst for a reforming reaction having improved thermal durability, configured such that a sintering inhibiting layer is formed by coating the surface of a monolith support with at least one element selected from the group consisting of Group 2, 3, 6, 13, 15 and 16 elements among elements in Period 3 or higher and an active catalyst layer is formed on the sintering inhibiting layer, thereby preventing carbon deposition and catalyst deactivation due to deterioration even upon reaction at high temperatures.
Abstract:
The present invention relates to a Ru—Pd bimetallic catalyst for use in hydrogenation of a compound, and more particularly to a catalyst prepared by loading both ruthenium and palladium on a g-C3N4 support and to a selective hydrogenation process of a pyridine group in a reaction system containing both a pyridine group and a benzene group using the catalyst.
Abstract:
The present invention relates to a monolith catalyst for reforming reaction, and more particularly, to a thermally stable (i.e. thermal resistance-improved) monolith catalyst for reforming reaction having a novel construction such that any one of Group 1A to Group 5A metals are used as a barrier component in the existing catalyst particles to inhibit carbon deposition occurring during the reforming reaction in a process for formation of a reforming monolith catalyst while improving thermal durability as well as non-activation of the catalyst due to a degradation.
Abstract:
This invention relates to a catalyst for use in the preparation of acetic acid through a methanol carbonylation reaction using carbon monoxide, and particularly to a heterogeneous catalyst represented by Rh/C3N4 configured such that a complex of a rhodium compound and 3-benzoylpyridine is immobilized on a carbon nitride support.