摘要:
Described is the use of synthetic adhesives in the manufacture of corrugated fiberboard at relatively low temperatures and high lineal speeds. The corrugated fiberboard includes a corrugated sheet of paper and a flat linerboard and the corrugation of the corrugated sheet of paper is produced at paper temperatures below 95° C. and at a lineal speed above 150 m/min. The production of the corrugation of a corrugated sheet of paper is immediately followed by a continuous operation in which a preferably unheated corrugated board adhesive is applied and the corrugated sheet of paper is adhered to at least one first linerboard. The corrugated board adhesive used is an aqueous adhesive dispersion based on at least one synthetic, dispersed polymer having preferably more than 40% by weight solids content, selected from acrylate copolymers, copolymers of vinylaromatics and conjugated aliphatic dienes and vinyl acetate-alkylene copolymers, wherein the glass transition temperatures of the polymers are above 20° C. and (preferably at least 5° C.) below the surface temperature of the corrugated sheet of paper to which they are applied.
摘要:
Described is the use of synthetic adhesives in the manufacture of corrugated fiberboard at relatively low temperatures and high lineal speeds. The corrugated fiberboard includes a corrugated sheet of paper and a flat linerboard and the corrugation of the corrugated sheet of paper is produced at paper temperatures below 95° C. and at a lineal speed above 150 m/min. The production of the corrugation of a corrugated sheet of paper is immediately followed by a continuous operation in which a preferably unheated corrugated board adhesive is applied and the corrugated sheet of paper is adhered to at least one first linerboard. The corrugated board adhesive used is an aqueous adhesive dispersion based on at least one synthetic, dispersed polymer having preferably more than 40% by weight solids content, selected from acrylate copolymers, copolymers of vinylaromatics and conjugated aliphatic dienes and vinyl acetate-alkylene copolymers, wherein the glass transition temperatures of the polymers are above 20° C. and (preferably at least 5° C.) below the surface temperature of the corrugated sheet of paper to which they are applied.
摘要:
The present invention features improved processes and organisms for the production of methionine. The invention demonstrates that a ΔmetF organism or a ΔmetE AmetH organism, for example, mutants of C. glutamicum or E. coli, can use a methyl capped sulfide source, e.g., dimethyl disulfide (DMDS), as a source of both sulfur and a methyl group, bypassing the need for MetH/MetE and MetF activity and the need to reduce sulfate, for the synthesis of methionine. Also described in this patent are data implicating MetY (also called MetZ) as an enzyme that incorporates a methyl capped sulfide source, e.g., DMDS, into methionine. A ΔmetF ΔmetB strain of C. glutamicum can use a methyl capped sulfide source, e.g., DMDS, as a source of both sulfide and a methyl group. Furthermore, methionine production by engineered prototrophic organisms that overproduce O-acetyl-homoserine was improved by the addition of a methyl capped sulfide source, e.g., DMDS.
摘要:
The present invention relates to microorganisms, in particular C. glutamicum in which the formation of N5,N10-methylene-THF is increased.The present invention also relates to the use of such microorganisms for producing methionine.
摘要:
This invention relates to methionine producing recombinant microorganisms. Specifically, this invention relates to recombinant strains of Corynebacterium that produce increased levels of methionine compared to their wild-type counterparts and further to methods of generating such microorganisms.
摘要:
The present invention relates to multiple promoters and to expression units comprising them; to the use thereof for regulating transcription and expression of genes; to expression cassettes which comprise multiple promoters or expression units of this kind; to vectors which comprise such expression cassettes; to genetically modified microorganisms which comprise vectors and/or expression units of this kind; and to processes for preparing biosynthetic products by culturing said genetically modified microorganisms.
摘要:
The present invention relates to a method of producing methionine in Coryneform bacteria in which enzymes of the pentose phosphate pathway are over-expressed. The present invention also relates to Coryneform bacteria for producing methionine in which at least two enzymes of the pentose phosphate pathway are over-expressed.
摘要:
The present invention relates to nucleotide sequences encoding enzymatically active cobalamin-methionine synthase and functional fragments thereof that are modified in comparison to the respective wild-type enzyme such that said enzymes show reduced product inhibition by methionine. The present invention also relates to polypeptides being encoded by such nucleotide sequences and host cells comprising such nucleotide sequences. Furthermore, the present invention relates to methods for producing methionine in host organisms by making use of such nucleotide sequences.
摘要:
The present invention relates to a novel method for the fermentative production of dipicolinate by cultivating a recombinant microorganism expressing an enzyme having dipicolinate synthetase activity. The present invention also relates to corresponding recombinant hosts, recombinant vectors, expression cassettes and nucleic acids suitable for preparing such hosts as well as a method of preparing polyester or polyamide copolymers making use of dipicolinate as obtained by fermentative production.
摘要:
The present invention relates to a method of increasing the amount of at least one polypeptide in the host cell by expressing a modified nucleotide sequence encoding for a polypeptide in a host cell with said modified nucleotide sequence being derived from a different non-modified nucleotide sequence encoding for a polypeptide of identical amino acid sequence such that the codon usage of the modified nucleotide sequence is adjusted to the codon usage of abundant proteins in the host cell.