摘要:
A wafer processing method is provided that includes the steps of heating a silicon wafer containing oxygen and irradiating an infrared ray having a wavelength within a range of 7-25 μm on the silicon wafer, and controlling formation of oxygen precipitates within the silicon wafer by selectively setting a heating temperature for heating the silicon wafer and an irradiation intensity of the infrared ray.
摘要:
A wafer processing method is provided that includes the steps of heating a silicon wafer containing oxygen and irradiating an infrared ray having a wavelength within a range of 7-25 μm on the silicon wafer, and controlling formation of oxygen precipitates within the silicon wafer by selectively setting a heating temperature for heating the silicon wafer and an irradiation intensity of the infrared ray.
摘要:
A quantitative evaluation method, a method for manufacturing a silicon wafer, and a silicon wafer manufactured by the method, enabling more efficient evaluation of the concentration of atomic vacancies existing in a silicon wafer. The quantitative evaluation method includes steps of: oscillating, in a state in which an external magnetic field is applied to a silicon wafer (26) while keeping the silicon wafer (26) at a constant temperature, an ultrasonic wave pulse and receiving a measurement wave pulse obtained after the ultrasonic wave pulse is propagated through the silicon wafer (26) for detecting a phase difference between the ultrasonic wave pulse and the measurement wave pulse; and calculating an elastic constant from the phase difference. The external magnetic field is changed to calculate the elastic constant corresponding to a change in the external magnetic field for evaluating a concentration of atomic vacancies in the silicon wafer (26).
摘要:
A quantitative evaluation method, a method for manufacturing a silicon wafer, and a silicon wafer manufactured by the method, enabling more efficient evaluation of the concentration of atomic vacancies existing in a silicon wafer. The quantitative evaluation method includes steps of: oscillating, in a state in which an external magnetic field is applied to a silicon wafer (26) while keeping the silicon wafer (26) at a constant temperature, an ultrasonic wave pulse and receiving a measurement wave pulse obtained after the ultrasonic wave pulse is propagated through the silicon wafer (26) for detecting a phase difference between the ultrasonic wave pulse and the measurement wave pulse; and calculating an elastic constant from the phase difference. The external magnetic field is changed to calculate the elastic constant corresponding to a change in the external magnetic field for evaluating a concentration of atomic vacancies in the silicon wafer (26).
摘要:
The battery is constituted to satisfy B/A≧0.57, wherein “A” represents a width of an active material region and “B” represents a width of each electrode terminal.
摘要:
A secondary battery in which temperature rise (heat generation) can be measured accurately at the time of quick charge/discharge, and a battery which can be configured readily using the secondary batteries while realizing low resistance. Separately from the positive and negative electrode terminals of a flat laminate film secondary battery, a third terminal is fixed perpendicularly thereto. The third terminal is connected with the electrode current collecting parts of a power generating element body constituting the secondary battery (1) and imparted with a potential equal to that of any one of the positive and negative electrode terminals. Inner temperature of the secondary battery is determined by measuring the temperature of the third terminal and a cell balancer circuit, or the like, is connected with the third terminal. The battery is configured by connecting the positive and negative electrode terminals directly in series.
摘要:
A flat secondary battery having a fusion-bonded sealing type laminate film as an armored body tends to be inferior in sealing reliability to a flat secondary battery having a welded sealing type can as an armored body, due to a difference in sealing method between the two batteries. Therefore, there has been a large challenge of finding the way to make the sealing reliability of the laminate film secondary battery closer to that of the can type secondary battery. The sealing reliability is improved by further increasing a sealing force without taking any measure to the existing laminate film secondary battery, in such a manner that the fusion bonding area of the existing laminate film secondary battery is sandwiched from upside and downside to be cramped from outside so as to mechanically add a sealing force from outside to the sealing force of the laminate film itself.
摘要:
A semiconductor device is produced by a process for intrinsic gettering heat treatment of a silicon crystal in which the concentration of C--O complex defects destined to form seeds for oxygen precipitation in the silicon crystal is increased or an amount of oxygen precipitate in the silicon crystal is controlled, to thereby eliminate the dispersion of the amount from one crystal to another. In the heat treatment of the silicon crystal, the amount of oxygen precipitation can be controlled with a high accuracy.
摘要:
A quantitative evaluation device and method of an atomic vacancy, which are capable of efficiently and quantitatively evaluating an atomic vacancy existing in a silicon wafer. A quantitative evaluation device 1 is equipped with a detector 5 including an ultrasonic generator 27 and an ultrasonic receiver 28, a silicon sample 6 formed with the ultrasonic generator 27 and the ultrasonic receiver 28 on a silicon wafer 26 comprising perfect crystal silicon, a magnetic force generator 4 for applying an external magnetic field to the silicon sample 6, and a cooler 3 capable of cooling and controlling the silicon sample 6 to a range of temperatures lower than or equal to 50K. The ultrasonic generator 27 and the ultrasonic receiver 28 are each equipped with a transducer 30 including a thin film oscillator 31 formed from a high-polymer material with a physical property capable of following an expanding action of a silicon wafer 26 in association with a temperature drop in the above range of the temperatures and whose molecular axes are oriented in the direction of an electric field when decreasing temperature with the electric field applied thereto and further, including electrodes 32, 33 for applying an electric field to the thin film oscillator 31.
摘要:
A Si single crystal having no defect region is stably grown by clearly detecting a type of a defect region or a defect free region of Si single crystal grown at a certain pulling rate profile and feeding back the data to the subsequent pulling. In the production of Si single crystal ingot by a CZ method, a concentration distribution of atomic vacancy in a cross-section of a precedent grown Si single crystal is detected by the direct observation method of atomic vacancy and then fed back to the subsequent pulling treatment to adjust a pulling rate profile of the subsequent pulling.