摘要:
The present invention aims to provide an excellent exchange coupling thin film consisting of a completely novel material other than FeMn or NiMn and having excellent corrosion resistance and high resistivity, and a magnetoresistive element and a magnetic head each of which include the exchange coupling thin film. The exchange coupling thin film includes an antiferromagnetic film mainly composed of a crystal phase of a body-centered cubic structure and containing Cr and element M where element M contains at least one element of the 3B group elements in the Periodic Table, or Al, Ga or In, and a ferromagnetic film containing at least one of Fe, Ne, and Co, both films being laminated in contact with each other, wherein magnetic exchange coupling is generated in the interface between the antiferromagnetic film and the ferromagnetic film.
摘要:
A thin magnetic element comprising a coil pattern formed on at least one side of a substrate and a thin magnetic film formed on the coil pattern, wherein, assuming that the thickness and width of a coil conductor constituting the coil pattern are t and a, respectively, an aspect ratio t/a of the coil conductor satisfies the relationship 0.035≦t/a≦0.35, and the thin magnetic film has a resistivity of 400 &mgr;&OHgr;cm or more.
摘要翻译:一种薄磁性元件,包括形成在衬底的至少一侧的线圈图案和形成在线圈图案上的薄磁膜,其中,假定构成线圈图案的线圈导体的厚度和宽度分别为t和a ,线圈导体的纵横比t / a满足关系0.035 <= t / a <= 0.35,薄磁膜的电阻率为400μΩEG·cm以上。
摘要:
A second antiferromagnetic layer formed on a free magnetic layer has a blocking temperature lower than that of a first antiferromagnetic layer. The exchange anisotropic magnetic field between the free magnetic layer and the second antiferromagnetic layer is smaller than the exchange anisotropic magnetic field between the first antiferromagnetic layer and the pinned magnetic layer. By applying an annealing treatment utilizing the blocking temperature difference between the first and second antiferromagnetic layers, the magnetization direction and the strength of the pinned magnetic layer and the free magnetic layer can be controlled appropriately.
摘要:
A magnetoresistive sensor includes a plurality of multilayered magnetoresistive films arranged in parallel. Each multilayered magnetoresistive film includes at least one pinned ferromagnetic layer and at least one free magnetic layer. Reversion of magnetization of the pinned ferromagnetic layer is pinned, whereas the vector of magnetization of the free ferromagnetic layer freely reverses in response to an external magnetic field. The vectors of magnetization of the pinned ferromagnetic layers in two adjacent multilayered magnetoresistive films are substantially antiparallel to each other.
摘要:
The present invention provides a spin-valve magnetoresistive sensor comprising at least two ferromagnetic layers including a first and a second ferromagnetic layers. A first antiferromagnetic layer is layered adjacent to the first ferromagnetic layer for increasing the coercive force of the first ferromagnetic layer to pin the magnetization direction of the first ferromagnetic layer. A pair of second antiferromagnetic layers are respectively positioned adjacent to the longitudinal ends of the second ferromagnetic layer. Further, a pair of third ferromagnetic layers are respectively layered adjacent to said pair of second antiferromagnetic layers for inducing magnetic anisotropy to pin the magnetization direction of each third ferromagnetic layer in a direction perpendicular to the pinned magnetization direction of the first ferromagnetic layer, thereby imposing a longitudinal bias on the second ferromagnetic layer to stabilize magnetic domains therein in order to suppress Barkhausen noise. The magnetization direction of the second ferromagnetic layer remains free to rotate in accordance with the direction of an external magnetic field, thereby changing the electrical resistance of the sensor.
摘要:
A magnetoresistance device comprising at least two ferromagnetic layers separated by a non-magnetic layer, the coercive force of one of the ferromagnetic layers being enhanced by a coercive force enhancement layer of an antiferromagnetic material disposed adjacent to the one of the ferromagnetic layer thereby pinning magnetization inversion in the one of the ferromagnetic layer, the other ferromagnetic layer serving as a free ferromagnetic layer in which magnetization inversion is allowed, wherein the spin orientation in the coercive force enhancement layer is aligned in a multilayer fashion into a direction substantially parallel to the plane of the coercive force enhancement layer. A method of producing such a device is also disclosed.
摘要:
A magnetoresistance device comprising at least two ferromagnetic layers separated by a non-magnetic layer, the coercive force of one of the ferromagnetic layers being enhanced by a coercive force enhancement layer of an antiferromagnetic material disposed adjacent to the one of the ferromagnetic layer thereby pinning magnetization inversion in the one of the ferromagnetic layer, the other ferromagnetic layer serving as a free ferromagnetic layer in which magnetization inversion is allowed, wherein the spin orientation in the coercive force enhancement layer is aligned in a multilayer fashion into a direction substantially parallel to the plane of the coercive force enhancement layer. A method of producing such a device is also disclosed.
摘要:
The present invention provides a method of producing a magnetoresistive element in which a laminate including a free ferromagnetic layer in which at least magnetization is freely rotated according to an external magnetic field, a non-magnetic layer, and a pinned ferromagnetic layer in which reversal of magnetization is pinned is formed, and is heat-treated for setting different directions of the easy axis of magnetization of the free ferromagnetic layer and the pinned ferromagnetic layer under different conditions. In the heat treatment, first annealing is performed at the predetermined temperature in a magnetic field applied in a first direction, and second annealing is performed in a magnetic field applied in a second direction substantially perpendicular to the first direction so that the easy axis of magnetization of the free ferromagnetic layer is substantially perpendicular to that of the pinned ferromagnetic layer.
摘要:
The present invention provides a magnetoresistive sensor having at least two ferromagnetic layers provided with a non-magnetic layer therebetween; a coercive force increasing layer consisting of an antiferromagnetic material and provided adjacent to one of the ferromagnetic layers, for increasing the coercive force thereof to pin magnetization reversal, the other ferromagnetic layer having free magnetization reversal; and an antiferromagnetic layer provided to adjacent to the other ferromagnetic layer having free magnetization reversal, for applying a longitudinal bias to the other ferromagnetic layer to induce magnetic anisotropy therein due to an unidirectional exchange bias magnetic field to stabilize a magnetic domain.
摘要:
The antiferromagnetic layer 4 is formed of the X—Mn alloy (X is an platinum group element) and the interface structure of with the pinned magnetic layer 3 is made to be non-coherent by properly adjusting the composition ratio of X. Consequently, the crystal structure of the antiferromagnetic layer 4 is transformed so as to obtain a large exchange anisotropic magnetic field by subjecting the layer to a heat treatment, making it possible to improve the reproduction characteristic over the conventional art.