摘要:
When the source and drain regions (an n.sup.- type semiconductor region and an n.sup.+ type semiconductor region) of a complementary MISFET and a p-type semiconductor region for use as a punch-through stopper are formed in a p-type well in a substrate having a p- and an n-type well, p-type impurities for the punch-through stopper are suppressed from being supplied to the feeding portion (an n.sup.+ type semiconductor region) of the n-type well.
摘要:
A SRAM having its memory cell constructed to include transfer MISFETs to be controlled by word lines and a flip-flop circuit having driver MISFETs and load MISFETs. Plate electrodes of large area fixed on predetermined power source lines are arranged over the load MISFETs such that the plate electrodes over the offset region of the load MISFETs are formed with an opening. A silicon nitride film having a thickness permeable to hydrogen but not to humidity is formed over the transfer MISFETs and the driver MISFETs formed over the main surface of a semiconductor substrate and the load MISFETs formed of a polycrystalline silicon film deposited on the driver MISFETs.
摘要:
A SRAM having its memory cell constructed to include transfer MISFETs to be controlled by word lines and a flip-flop circuit having driver MISFETs and load MISFETs. Plate electrodes of large area fixed on predetermined power source lines are arranged over the load MISFETs such that the plate electrodes over the offset region of the load MISFETs are formed with an opening. A silicon nitride film having a thickness permeable to hydrogen but not to humidity is formed over the transfer MISFETs and the driver MISFETs formed over the main surface of a semiconductor substrate and the load MISFETs formed of a polycrystalline silicon film deposited on the driver MISFETs.
摘要:
In depositing a silicon oxide film which constitutes part of a final passivation film onto a bonding pad formed on an interlayer insulating film, the silicon oxide depositing step is divided in two stages, and after the first deposition, the bonding pad is once exposed by etching, then the second deposition is performed, whereby the silicon oxide film which has thus been deposited in two stages is formed over a fuse element formed under the interlayer insulating film, while on the bonding pad is formed only the silicon oxide film deposited in the second stage. As a result, at the time of etching polyimide resin, silicon nitride film and silicon oxide film successively to expose the bonding pad, there remains a sufficient thickness of insulating film between the bottom of an aperture which is formed at the same time and the fuse element. Thereafter, an electrical test is conducted while applying a probe to the bonding pad and, where required, the fuse element located under the aperture is cut.
摘要:
A process of producing a semiconductor device having a highly reliable groove isolation structure with a desired radius of curvature formed at the groove upper edge and without formation of any step. The device is produced by reducing the stress generation around the groove upper edge of an element isolation groove on a semiconductor substrate, thereby optimizing the shape of an element isolation groove and making the device finer and improving the device electric characteristics.
摘要:
A semiconductor device having a highly reliable groove isolation structure with a desired radius of curvature formed at the groove upper edge and without formation of any step, there is produced by reducing the stress generation around the groove upper edge of an element isolation groove on a semiconductor substrate, thereby optimizing the shape of an element isolation groove and making the device finer and improving the device electric characteristics.
摘要:
A process of producing a semiconductor device having a highly reliable groove isolation structure with a desired radius of curvature formed at the groove upper edge and without formation of any step. The device is produced by reducing the stress generation around the groove upper edge of an element isolation groove on a semiconductor substrate, thereby optimizing the shape of an element isolation groove and making the device finer and improving the device electric characteristics.
摘要:
A process of producing a semiconductor device having a highly reliable groove isolation structure with a desired radius of curvature formed at the groove upper edge and without formation of any step. The device is produced by reducing the stress generation around the groove upper edge of an element isolation groove on a semiconductor substrate, thereby optimizing the shape of an element isolation groove and making the device finer and improving the device electric characteristics.
摘要:
A silicon oxide film 2 which is exposed from a side wall of a groove 4a is etched to displace the silicon oxide film 2 backward toward an active region. The displacement amount is set to be equal to or more than a film thickness (Tr) of a silicon oxide film 5 to be formed on an inner wall of the groove 4a in a later thermal oxidation step and equal to or less than twice the film thickness (Tr) thereof. A shoulder portion of the groove 4a can be rounded by a low-temperature heat treatment at 1000.degree. C. or less, by controlling a heat treatment period such that the film thickness (Tr) of the silicon oxide film 5 is more than the film thickness (Tp) of the silicon oxide film 2 and equal to or less than three times the film thickness (Tr) thereof (Tp
摘要:
A semiconductor device having a highly reliable groove isolation structure with a desired radius of curvature formed at the groove upper edge and without formation of any step, there is produced by reducing the stress generation around the groove upper edge of an element isolation groove on a semiconductor substrate, thereby optimizing the shape of an element isolation groove and making the device finer and improving the device electric characteristics.