摘要:
The present invention relates to an organic light emitting device (OLED) for producing electroluminescence having, in order, for example, an anode, a hole transporting layer (HTL), a blocking layer, an electron transporting layer (ETL), and a cathode. In the devices of the present invention, the hole transporting layer comprises a polymeric material, which material may be emissive or may be doped with an emissive dopant. The blocking layer and the electron transporting layer are small-molecule materials. The presence of a blocking layer confines the emission of light to the polymer layer, which may be a HTL or a separate emitting layer (EL). The devices of the present invention are suitable for use in single color, multi-color and full-color, passive or active matrix OLED displays.
摘要:
A device is provided. The device includes a substrate, a first electrode disposed over the substrate, a small molecule organic emissive layer disposed over the first electrode, and a second electrode disposed over the organic emissive layer. The substrate has a first index of refraction, and the organic emissive layer has a second index of refraction. The first index of refraction is higher than the second index of refraction. The device may have an external electroluminescent efficiency of at least about 56%. Bulky substituents or dopants may be used to decrease the index of refraction and/or the density of the organic emissive layer.
摘要:
The present invention provides an apparatus and a method of fabricating the apparatus. The apparatus comprises a substrate having a planar surface and first and second electrodes located on the planar surface. The first electrode has a top surface and a lateral surface, and the lateral surface has an edge near or in contact with the substrate. An electrode insulating layer is located on the top surface and a self-assembled layer located on the lateral surface. The second electrode is in contact with both the self-assembled layer and the electrode insulating layer.
摘要:
Self-assembled photonic crystals, including large sphere planar opals, infiltrated planar opals and inverted planar opals, as well as methods for manufacturing same are provided. Large sphere planar opals are manufactured according to a method comprising the steps of: synthesizing monodisperse silica spheres, wherein each of the silica spheres has a diameter greater than or equal to about 400 nanometers; purifying the silica spheres; and self-assembling the silica spheres into a plurality of ordered, planar layers on a substrate. Infiltrated planar opals may also be manufactured by further processing the large sphere planar opal by sintering the planar opal and infiltrating the planar opal with a predetermined material. Inverted planar opals may further be manufactured by removing the silica spheres from the infiltrated planar opal. Various modifications to the substrate and planar opal are also provided to enhance the properties of these photonic crystals.
摘要:
A photovoltaic device and method of making a photovoltaic device are disclosed. The method includes laminating an organic layer onto an inorganic semiconductor layer. A first electrical contact is electrically coupled to the organic layer and a second electrical contact is coupled to the inorganic semiconductor layer. The inorganic semiconductor layer may include a second organic layer. At least one of the organic layer and the second organic layer may form a heterojunction with the inorganic semiconductor layer. The organic layer may further comprise a metal layer. At least one of the organic layer, the inorganic semiconductor layer and the metal layer may be patterned.
摘要:
A method and apparatus for measuring a charge on a surface, such as on a semiconductor wafer, arising during plasma processing is provided. Such a charge may be measured on an insulating film applied to such a wafer. By the present invention, the charge on such an insulator exposed to plasma is measured in-situ using micro-cantilevers. The micro-cantilevers include an insulating base positioned on the substrate and a cantilevered beam extending therefrom to over the substrate. The beam is formed of a conductive material. A charge on the beam causes an opposite charge to form on the substrate. The opposite charges attract to move or deflect the beam towards the substrate. The amount of movement or deflection corresponds to the magnitude of the charge. This movement or deflection of the beam can be measured to determine the charge by bouncing a light source, such as a laser, off of the beam. In another embodiment, the cantilever includes a flexible bridge interconnected between the base and a rigid beam. In this embodiment, the surface of the beam does not bend. Rather, movement of the beam is accomplished by the bending of the flexible bridge. This allows for easier measurements of the movement of the beam because the surface of the beam remains planar.
摘要:
A method for modifying the surface properties such as work function of semiconducting and conducting layers by plasma treatment. Also disclosed are electrical devices such as organic light emitting devices of enhanced performance owing to the use of plasma treatment-modified semiconducting or conducting layers.
摘要:
The disclosure relates to obstacle array devices (also known as bump array devices) for separating populations of particles by size. Improvements over previous obstacle array devices are realized by causing the fluid velocity profile across gaps between obstacles to be asymmetrical with respect to the plane that bisects the gap and is parallel to the direction of bulk fluid flow. Such asymmetry can be achieved by selecting the shape(s) of the obstacles bounding the gap such that the portions of the obstacles upstream from, downstream from, or bridging the narrowest portion of the gap are asymmetrical with respect to that plane. Improvements are also realized by using obstacles that have sharp edges bounding the gaps. Other improvements are realized by selecting obstacle shapes such that the critical particle dimensions defined by the gaps in two different fluid flow directions differ.
摘要:
Organic light emitting devices and methods of making them are described. The devices contain a substrate, a first electrical contact layer, a patterned organic layer, and a second electrical contact layer. A covering portion covers the sides of the organic layer, protecting the same. In the methods, a first organic layer is provided over a first electrical contact layer, followed by a patterned second electrical contact layer. The organic layer is etched using the patterned electrical contact layer as a mask. In one embodiment, the etching step exposes an area over the first electrical contact layer, and a second organic layer is provided over the exposed area.
摘要:
The disclosure relates to obstacle array devices (also known as bump array devices) for separating populations of particles by size. Improvements over previous obstacle array devices are realized by causing the fluid velocity profile across gaps between obstacles to be asymmetrical with respect to the plane that bisects the gap and is parallel to the direction of bulk fluid flow. Such asymmetry can be achieved by selecting the shape(s) of the obstacles bounding the gap such that the portions of the obstacles upstream from, downstream from or bridging the narrowest portion of the gap are asymmetrical with respect to that plane.Improvements are also realized by using obstacles that have sharp edges bounding the gaps. Other improvements are realized by selecting obstacle shapes such that the critical particle dimensions defined by the gaps in two different fluid flow directions differ.