Abstract:
A heat generating body box housing refrigeration device includes a first refrigerant cycle in which a first condenser and a first evaporator are connected by a first refrigerant liquid pipe and a first refrigerant steam pipe and a second refrigerant cycle in which a second condenser and a second evaporator are connected by a second refrigerant liquid pipe and a second refrigerant steam pipe. The first refrigerant liquid pipe is connected between a first joint and a second joint, the first refrigerant steam pipe is connected between a third joint and a fourth joint, the second refrigerant liquid pipe is connected between a fifth joint and a sixth joint, and the second refrigerant steam pipe is connected between a seventh joint and an eighth joint.
Abstract:
An electron beam emitted from a field-emission electron source array passes through a plurality of through holes formed in a mesh structure and reaches a target. Each of the plurality of through holes in the mesh structure has an opening on a side of the field-emission electron source array and an electron beam passageway that continues from the opening. The mesh structure is formed of a silicon-containing material doped with a N-type or P-type material. In this way, it is possible to suppress a decrease in the amount of the electron beam reaching the target while securing a mechanical strength of an electrode provided with a large number of through holes, and suppress expansion of the electron beam on the target.
Abstract:
A stable field-emission electron source that does not suffer from a current drop even after a high-current density operation for a long time is provided. The field-emission electron source includes: a substrate; an insulating layer that is formed on the substrate and that has a plurality of openings; cathodes arranged at the respective openings in order to emit electron beams; a lead electrode formed on the insulating layer in order to control emission of electrons from the respective cathodes; and a surface-modifying layer formed on the surface of each of the cathodes emitting electrons, comprising a chemical bond between a cathode material composing the cathodes and a material different from the cathode material.
Abstract:
An electron emission element includes a substrate, a cathode electrode formed on the substrate, an anode electrode disposed so as to be opposed to the cathode electrode, an electron emission member disposed on the cathode electrode, a control electrode disposed between the cathode electrode and the anode electrode, and an insulating layer. The electron emission member includes a first member having a hole and a second member filling the hole, wherein the second member is more likely to emit electrons than the first member.
Abstract:
A matrix-type cold-cathode electron source device includes: an emitter array (3b) in which a plurality of emitters are arranged, and a gate electrode (5) opposed to the emitter array (3b). The gate electrode (5) includes: an emitter area gate electrode (5c) opposed to the emitter array (3b); a gate address electrode (5a) connecting the emitter area gate electrode (5c) to a gate signal wire (8a); and a high-resistance area (5b) disposed between the gate address electrode (5a) and the emitter area gate electrode (5c).
Abstract:
A field emission device having cold cathode devices including an emitter and a lead electrode, and the field emission device is provided with the plural kinds of cold cathode device groups classified based on the emission property of the cold cathode device. This field emission device has a member for allowing the cold cathode device group to perform emission by successively changing the cold cathode device group that mainly performs emission based on the difference in the emission property. Thus, it is possible to maintain the emission current at a predetermined necessary value or more and to realize the long lifetime of the field emission device.
Abstract:
A field-emission electron source apparatus includes a vacuum container that receives a field-emission electron source array, a target and an auxiliary electrode, and a getter pump that is disposed in the vacuum container and absorbs and removes excess gas. An electron beam emitted from the field-emission electron source array passes through a plurality of through holes formed in the auxiliary electrode and reaches the target. A space containing the field-emission electron source array and a space containing the target and the getter pump are separated substantially by the auxiliary electrode so that gas generated from the target is absorbed by the getter pump without passing through the space containing the field-emission electron source array. This makes it possible to provide a highly-reliable field-emission electron source apparatus in which the influence of gas and ions on the field-emission electron source array is eliminated or reduced.
Abstract:
The object of the present invention is to provide a driving method and a driving apparatus for a field emission device that controls emission current with stability regardless of how long the device is driven. The field emission device driving method and driving apparatus of the present invention set the actual emission current at a reference level by adjusting the amount of current which is supplied to the emitter to a reference level. The amount of current supplied to the emitter is adjusted to the reference level by increasing the driving voltage in response to driving time elapsing in a state in which the electron emission performance is sustained above the reference level. By adjusting the amount of current supplied to the emitter in a state in which the driving voltage is sustained higher than the minimum voltage, a stable amount of emission current can be sustained and electron emission without fluctuations can be realized, even when the performance of the field emission device in emitting electrons deteriorates due to driving time elapsing.
Abstract:
A field emission electron source capable of achieving large current density is provided at low cost with good productivity. An insulating layer is formed on a substrate and has one or more openings; and an extraction electrode is formed on the insulating layer. In one or more of the openings, a plurality of emitters, each of which emits an electron by an electric field from the extraction electrode, are formed on the substrate.
Abstract:
An electron emission element of the present invention includes a substrate, a cathode formed on the substrate, an anode opposed to the cathode, an electron emission member disposed on the cathode, and a control electrode disposed between the cathode and the anode. During operation, the electric field intensity immediately above the electron emission member is lower than that between the control electrode and the anode. Alternatively, the spatial average of an electric field intensity between the electron emission member and the control electrode is smaller than that between the control electrode and the anode.