摘要:
A vacuum vapor deposition apparatus includes a vacuum chamber having a plurality of vapor sources and a heater for heating the vapor sources to achieve vacuum vapor deposition on a surface of at least one substrate within the vacuum chamber. At least one of the vapor sources utilizes an organic material. A hot wall, which encloses the vapor sources and a space in which the vapor sources and the substrate confront each other, is heated to a temperature at which the organic material is neither deposited nor decomposed. The organic material is vapor deposited on the surface of the substrate by heating the vapor sources while the vapor sources and the substrate are moved relative to each other.
摘要:
An organic electroluminescent device includes at least two light-emissive units provided between a cathode electrode and an anode electrode opposed to the cathode electrode, each of the light-emissive units including at least one light-emissive layer. The light-emissive units are partitioned from each other by at least one charge generation layer, the charge generation layer being an electrically insulating layer having a resistivity of not less than 1.0×102 Ωcm.
摘要:
An organic electroluminescent device includes at least two light-emissive units provided between a cathode electrode and an anode electrode opposed to the cathode electrode, each of the light-emissive units including at least one light-emissive layer. The light-emissive units are partitioned from each other by at least one charge generation layer, the charge generation layer being an electrically insulating layer having a resistivity of not less than 1.0×102 Ωcm.
摘要:
The present invention provides an organic light emitting device which can reduce the angle dependency of the emission brightness and the emission color, and has a small change in the emission brightness and the emission color with respect to film thickness fluctuations, and can increase use efficiency of the light. The organic light emitting device of the present invention has a plurality of emission layers 3 between an anode 1 and a cathode 2, and the emission layers 3 are separated from each other by an equipotential surface forming layer 4 or a charge generating layer 4. The feature of the present invention resides in that the organic light emitting device has, at least either inside or outside the device, a light scattering means 5 for scattering light emitted from the emission layers 3. The organic light emitting device can reduce the angle dependency of the emission brightness and the emission color by outputting the light emitted from the emission layers in a condition where the light is scattered by the light scattering means.
摘要:
A coating apparatus 10 includes a base 11, a substrate support stage unit 2 mounted on the base 11 and capable of fixedly supporting a substrate 1, a coating unit 3 mounted on the base 11 and capable of discharging a coating material onto a substrate 1 fixedly supported on the substrate support stage unit 2, and a motor unit 4 for driving at least either the substrate support stage unit 2 or the coating unit 3 for sliding on the base 11. The motor unit 3 has a stator assembly 22 on the base 11. The stator assembly 22 includes a plurality of magnets 31 linearly arranged such that opposite magnetic polarities of the magnets alternately change, and a pair of magnet holding members 37 and 38 for linearly pressing the magnets 31 together from both the ends of the magnets.
摘要:
An organic electroluminescent device includes an anode electrode layer, a cathode electrode layer opposed to the anode electrode layer, and a luminous layer containing an organic compound disposed between the anode electrode layer and the cathode electrode layer. An excitation state of the organic compound in the luminous layer is created upon a hole injection from the anode electrode layer, and an electron injection from the cathode electrode layer, thereby causing light emission in the organic electroluminescent device. An electron-accepting material is provided in at least one hole transportation layer capable of transporting holes injected from the anode electrode layer disposed between the anode electrode layer and the cathode electrode layer, and the electron-accepting material is positioned at a site which is not adjacent to the anode electrode layer.
摘要:
An organic device has a hole current-electron current conversion layer which comprises a laminate of an electron transportation section and a hole transportation section. The electron transportation section includes a charge transfer complex formed upon an oxidation-reduction reaction between a reduced low work function metal and an electron-accepting organic compound, the reduced metal being produced upon an in-situ thermal reduction reaction caused upon contact, through lamination or mixing by co-deposition, of an organic metal complex compound or an inorganic compound containing at least one metal ion selected from ions of low work function metals having a work function of not more than 4.0 eV, and a thermally reducible metal capable of reducing a metal ion contained in the organic metal complex compound or the inorganic compound in vacuum to the corresponding metal state, and the electron transportation section having the electron-accepting organic compound in the state of radical anions. The hole transportation section includes an organic compound having an ionization potential of less than 5.7 eV and an electron-donating property and an inorganic or organic substance capable of forming a charge transfer complex upon its oxidation-reduction reaction with the organic compound, the organic compound and the inorganic or organic substance being contacted through lamination or mixing, and the electron-donating organic compound is in the state of radical cations.
摘要:
A vacuum deposition device, wherein an evaporation source 2 and a deposited body 3 are disposed in a vacuum chamber 1 and a space between the evaporation source 2 and the deposited body 3 is surrounded by a tubular body 4 heated at a temperature for vaporizing the substances of the evaporation source so that the substances vaporized from the evaporation source 2 can reach the surface of the deposited body 3 through the inside of the tubular body 4 and then be deposited thereon, and a control member 8 for controllably guiding the movement of the vaporized substances to the deposited body 3 inside the tubular body 4 is installed in the tubular body 4, whereby the distribution of the vaporized substances adhered onto the deposited body can be controlled so that deposition with uniform film thickness can be performed on the deposited body and, as the case may be, the deposition can be performed with an intentionally set film thickness distribution.
摘要:
Disclosed is a method for forming a thin-film layer, such as a metallic film or a transparent conductive film, on a functional organic layer formed from an organic compound, by means of a sputtering method performed at a low discharge voltage and a low gas pressure, without imparting any damage to the surface of the organic layer. The thin-film layer is formed by use of a facing-targets-type sputtering apparatus including a pair of facing targets disposed a predetermined distance away from each other; an electron reflection electrode disposed on the periphery of each target; and magnetic field generation means disposed at the sides of each target. The magnetic field generation means generates a magnetic field extending from one target to the other so as to surround a confinement space provided between the paired targets, as well as a magnetic field having a portion parallel to the surface of each target in the vicinity of a peripheral edge portion of the target. When an AC-DC power containing a DC component and a high-frequency component is supplied as a sputtering power to the apparatus, the thin-film layer can be formed at a lower discharge voltage and a lower gas pressure.
摘要:
An aromatic amine derivative of the following general formula (1) is useful to form an auxiliary carrier transporting layer in an electroluminescent device. R1 is a monovalent hydrocarbon group or organooxy group, and A and B have the following general formula (2) or (3).