摘要:
Provided are a semiconductor device and a method of fabricating the same. The semiconductor device includes an insulating layer that is formed on a supporting layer and has a contact hole. A first contact plug is formed on an inner wall and bottom of the contact hole. A second contact plug buries the contact hole and is formed on the first contact plug. A conductive layer is connected to the first contact plug and the second contact plug. The bottom thickness of the first contact plug formed on the bottom of the contact hole is thicker than the inner wall thickness of the first contact plug formed on the inner wall of the contact hole.
摘要:
A semiconductor substrate includes a first transistor area having a first gate electrode and first source/drain areas, a second transistor area having a second gate electrode and second source/drain areas, and an interface area provided at an interface of the first transistor area and the second transistor area and having a third gate electrode. A first stress film is on the first gate electrode and the first source/drain areas of the first transistor area and at least a portion of the third gate electrode of the interface area. A second stress film is on the second gate electrode and the second source/drain areas of the second transistor area and not overlapping the first stress film on the third gate electrode of the interface area or overlapping at least a portion of the first stress film. The second stress film overlapping at least the portion of the first stress film is thinner than the second stress film in the second transistor area. Related methods are also described.
摘要:
Provided are a nonvolatile memory device that has enhanced endurance and can accurately read stored data, and a method of manufacturing the same. The nonvolatile memory device includes a trench formed in a semiconductor substrate, a gate electrode formed in the trench, a gate electrode insulating layer interposed between the gate electrode and bottom and lower sidewalls of the trench, a trap structure interposed between upper sidewalls of the trench and the gate electrode and comprising a tunneling layer, a trapping layer, and a blocking layer, and source and drain regions formed on both sides of the semiconductor substrate with respect to the trench, in which the gate electrode insulating layer is not formed and partially overlapped by the trapping layer.
摘要:
A metal-oxy-nitride seed dielectric layer can be formed on a metal-nitride lower electrode of a meta-insulator-metal (MIM) type capacitor. The metal-oxy-nitride seed dielectric layer can act as a barrier layer to reduce a reaction with the metal-nitride lower electrode during, for example, backend processing used to form upper levels of metallization/structures in an integrated circuit including the MIM type capacitor. Nitrogen included in the metal-oxy-nitride seed dielectric layer can reduce the type of reaction, which may occur in conventional type MIM capacitors. A metal-oxide main dielectric layer can be formed on the metal-oxy-nitride seed dielectric layer and can remain separate from the metal-oxy-nitride seed dielectric layer in the MIM type capacitor. The metal-oxide main dielectric layer can be stabilized (using, for example, a thermal or plasma treatment) to remove defects (such as carbon) therefrom and to adjust the stoichiometry of the metal-oxide main dielectric layer.
摘要:
A semiconductor device having a gate with a negative slope and a method of manufacturing the same. A poly-SiGe layer with a Ge density profile which decreases linearly from the bottom of the gate toward the top of the gate is formed and a poly-SiGe gate having a negative slope is formed by patterning the poly-SiGe layer. It is possible to form a gate whose bottom is shorter than its top defined by photolithography by taking advantage of the variation of etching characteristics with Ge density when patterning. Accordingly, the gate is compact enough for a short channel device and gate resistance can be reduced.
摘要:
A semiconductor substrate includes a first transistor area having a first gate electrode and first source/drain areas, a second transistor area having a second gate electrode and second source/drain areas, and an interface area provided at an interface of the first transistor area and the second transistor area and having a third gate electrode. A first stress film is on the first gate electrode and the first source/drain areas of the first transistor area and at least a portion of the third gate electrode of the interface area. A second stress film is on the second gate electrode and the second source/drain areas of the second transistor area and not overlapping the first stress film on the third gate electrode of the interface area or overlapping at least a portion of the first stress film. The second stress film overlapping at least the portion of the first stress film is thinner than the second stress film in the second transistor area. Related methods are also described.
摘要:
A non-volatile memory device having an asymmetric channel structure is provided. The non-volatile memory device includes a semiconductor substrate, a source region and a drain region which are formed in the semiconductor substrate and doped with n-type impurities, a trapping structure which includes a tunneling layer, which is disposed on a predetermined region of the semiconductor substrate and through which charge carriers are tunneled, and a charge trapping layer, which is formed on the tunneling layer and traps the tunneled charge carriers, a gate insulating layer which is formed on the trapping structure and the exposed semiconductor substrate, a gate electrode which is formed on the gate insulating layer, and a channel region which is formed between the source region and the drain region and includes a first channel region formed on a lower part of the trapping structure and a second channel region formed on a lower part of the gate insulating layer, the threshold voltage of the first channel region being lower than that of the second channel region.
摘要:
In a non-volatile memory device with a buried control gate, the effective channel length of the control gate is increased to restrain punchthrough, and a region for storing charge is increased for attaining favorably large capacity. A method of fabricating the memory device includes forming the control gate within a trench formed in a semiconductor substrate, and forming charge storing regions in the semiconductor substrate on both sides of the control gate in a self-aligning manner, thereby allowing for multi-level cell operation.
摘要:
A method of forming a high dielectric film using atomic layer deposition (ALD), and a method of manufacturing a capacitor having the high dielectric film, include supplying a precursor containing a metal element to a semiconductor substrate and purging a reactor; supplying an oxidizer and purging the reactor; and supplying a reaction source containing nitrogen and purging the reactor.
摘要:
A nonvolatile memory device is provided which includes a floating gate having a lower portion formed in a trench defined in a surface of a substrate and an upper portion protruding above the surface of the substrate from the lower portion. A gate insulating layer is formed along an inner wall of the trench and interposed between the trench and the lower portion of the floating gate. A source region is formed in the substrate adjacent a first sidewall of the trench. A control gate having a first portion is formed over the surface of the substrate adjacent a second sidewall of the trench, and a second portion is formed over the upper portion of the floating gate and extending from the first portion. The first sidewall of the trench is opposite the second sidewall of the trench. An inter-gate insulating layer is formed on the upper portion of floating gate and interposed between the floating gate and the control gate, and a drain region is formed in the surface of the substrate adjacent the control gate and spaced from the second sidewall of the trench.