摘要:
Systems and methods for encapsulation of chemically amplified resist template for low pH electroplating are disclosed. In a first method embodiment, a resist template structure is formed on a wafer. Substantially all surfaces of the resist template structure are encapsulated to form an encapsulated structure. Magnetic materials are plated onto the encapsulated structure.
摘要:
A method for forming a P3 layer with NiFe and alumina mask using resist shrink process for use in perpendicular magnetic write heads. The method includes forming a laminated layer, forming an alumina layer on top of the laminated layer, depositing a conductive layer onto the laminated layer, forming a plating frame on a gap layer. The plating frame has a trench defined by plating track, the alumina, laminated and conductive layers each including an area below the trench. The method further includes shrinking the trench, plating NiFe into a portion of the shrunk trench, stripping the plating frame, removing the conductive layer except the conductive layer formed below the trench, removing the alumina layer except the alumina layer formed below the trench, removing the laminated layer except the laminated layer formed below the trench and patterning the laminated layer formed below the trench.
摘要:
A lift-off method for forming write pole of a magnetic write head and write pole formed thereby is disclosed. A write pole including a hard mask on a top portion of the write pole is formed. A layer of material for reinforcing sidewall fencing of the write pole is deposited. Portions of the layer of material on top of the write pole are removed while the layer of material at the sidewall fencing is left to provide support to the sidewall fencing.
摘要:
A method for forming a P3 layer with NiFe and alumina mask using resist shrink process for use in perpendicular magnetic write heads. The method includes forming a laminated layer, forming an alumina layer on top of the laminated layer, depositing a conductive layer onto the laminated layer, forming a plating frame on a gap layer. The plating frame has a trench defined by plating track, the alumina, laminated and conductive layers each including an area below the trench. The method further includes shrinking the trench, plating NiFe into a portion of the shrunk trench, stripping the plating frame, removing the conductive layer except the conductive layer formed below the trench, removing the alumina layer except the alumina layer formed below the trench, removing the laminated layer except the laminated layer formed below the trench and patterning the laminated layer formed below the trench.
摘要:
A lift-off method for forming write pole of a magnetic write head and write pole formed thereby is disclosed. A write pole including a hard mask on a top portion of the write pole is formed. A layer of material for reinforcing sidewall fencing of the write pole is deposited. Portions of the layer of material on top of the write pole are removed while the layer of material at the sidewall fencing is -left to provide support to the sidewall fencing.
摘要:
A magnetic write head and method of manufacture thereof that has a first pole structure having a notched structure configured with a steep shoulder portion and a narrow vertical notch portion extending from the top of the steep shoulder portion. The write head also includes a second pole structure (P2) that has a very narrow width (track width) and that is self aligned with the narrow vertical notch structure of the first pole structure. The write head provides excellent magnetic properties including a very narrow track width and minimal side writing, while avoiding magnetic saturation of the poles.
摘要:
A method and apparatus for integrating a stair notch and a gap bump at a pole tip in a write head is disclosed. A protective plated layer is formed over the bump to prevent the bump form being damaged during formation of the notch at the pole tip. The flux from the second pole outside of the track will be effectively channeled to the first pole piece under the alumina bump.
摘要:
One preferred method for use in making a magnetic write head with use of the resist channel shrinking solution includes the steps of forming a first pole piece layer of a first pole piece; forming a gap layer over the first pole piece layer; forming a patterned resist over the first pole piece layer and the gap layer; electroplating a first pedestal portion of a second pole piece over the gap layer within a channel of the patterned resist; forming an oxide layer over the first pedestal portion; applying the resist channel shrinking solution comprising the resist channel shrinking film and the corrosion inhibitors over the patterned resist; baking the resist channel shrinking solution over the patterned resist to thereby reduce a width of the channel; removing the resist channel shrinking solution; electroplating a second pedestal portion of the second pole piece within the reduced-width channel of the patterned resist; removing the patterned resist; and milling the structure. Advantageously, the oxide layer and the corrosion inhibitors of the resist channel shrinking solution reduce corrosion in the pole piece during the act of baking the resist channel shrinking solution.
摘要:
A method for use in making a magnetic write head includes the steps of forming a first pole piece layer of a first pole piece; forming a patterned resist over the first pole piece layer; electroplating a pedestal over the first pole piece layer within a channel of the patterned resist; electroplating a metal gap layer over the pedestal within the channel of the patterned resist; forming a resist channel shrinking film over the patterned resist; baking the resist channel shrinking film over the patterned to thereby reduce a width of the channel; removing the resist channel shrinking film; electroplating a second pole piece within the reduced-width channel of the patterned resist; removing the patterned resist; and milling the pedestal, using the second pole piece as a mask, to form a central notched pedestal having side walls with angled slopes. Advantageously, the reduction in channel width using the resist channel shrinking film provides for self-alignment of the second pole piece with the pedestal which can be symmetrically notched for improved overwrite (OW) properties and reduced adjacent track interference (ATI).
摘要:
A pedestal is formed over a first pole piece layer and insulator materials are formed to surround it. A gap layer made of a non-magnetic insulator or metal is then formed over the pedestal and the insulator, followed by the optional formation of a seed layer. A second pole piece is formed over the gap layer with or without the seed layer by forming a patterned resist using E-beam lithography and electroplating second pole piece materials within the patterned resist. After milling to remove side portions of the gap layer and the optional seed layer, a chemical etch is performed to remove a top portion of the insulator materials. The pedestal is then notched and trimmed by ion milling using the second pole piece as a mask to form a central notched structure. Since the second pole piece is precisely centered over the pedestal prior to notching, the pedestal is notched symmetrically to form a notched structure having side walls with angled slopes.