摘要:
To provide a manufacturing method of thin film transistors (TFT) using poly-silicone and having an LDD structure. In particular, the LDD sections of the TFTs are formed in an improved method so as to achieve a high throughput and stable performance of the TFTs. To be specific, the LD region is doped at a low concentration in the ion implantation method which includes mass spectrometry because high controllability over a dose is required. On the other hand, the source and drain regions are doped at a higher concentration than the LD region in the ion showering method which does not include mass spectrometry. Using the ion showering method, poly-crystal silicon can be doped such that less doping damage is caused thereto. This makes it possible to apply a lower temperature for annealing, such as RTA, to activate doped impurities so as to prevent the substrate from being curved. Further, combination of the ion implantation method and the showering method achieves a high throughput production of TFTs having stable performance.
摘要:
A method of fabricating a thin film transistor by setting the temperature of a heat treatment for crystallizing an active layer which is formed on a substrate at a level not deforming the substrate and activating an impurity layer in a heat treatment method different from that employed for the heat treatment, and a semiconductor device prepared by forming a heat absorption film, a semiconductor film, a gate insulating film, and a gate electrode on a substrate, the heat absorption film being provided within a region substantially corresponding to the semiconductor film.
摘要:
A method of fabricating a thin film transistor by setting the temperature of a heat treatment for crystallizing an active layer which is formed on a substrate at a level not deforming the substrate and activating an impurity layer in a heat treatment method different from that employed for the heat treatment, and a semiconductor device prepared by forming a heat absorption film, a semiconductor film, a gate insulating film, and a gate electrode on a substrate, the heat absorption film being provided within a region substantially corresponding to the semiconductor film.
摘要:
A method of fabricating a thin film transistor by setting the temperature of a heat treatment for crystallizing an active layer which is formed on a substrate at a level not deforming the substrate and activating an impurity layer in a heat treatment method different from that employed for the heat treatment, and a semiconductor device prepared by forming a heat absorption film, a semiconductor film, a gate insulating film, and a gate electrode on a substrate, the heat absorption film being provided within a region substantially corresponding to the semiconductor film.
摘要:
A method of fabricating a thin film transistor by setting the temperature of a heat treatment for crystallizing an active layer which is formed on a substrate at a level not deforming the substrate and activating an impurity layer in a heat treatment method different from that employed for the heat treatment, and a semiconductor device prepared by forming a heat absorption film, a semiconductor film, a gate insulating film, and a gate electrode on a substrate, the heat absorption film being provided within a region substantially corresponding to the semiconductor film.
摘要:
A method of fabricating a thin film transistor by setting the temperature of a heat treatment for crystallizing an active layer which is formed on a substrate at a level not deforming the substrate and activating an impurity layer in a heat treatment method different from that employed for the heat treatment, and a semiconductor device prepared by forming a heat absorption film, a semiconductor film, a gate insulating film, and a gate electrode on a substrate, the heat absorption film being provided within a region substantially corresponding to the semiconductor film.
摘要:
A liquid crystal display unit is described, which includes a first substrate, a second substrate opposing to the first substrate, pixel driving elements, first and second insulation layers, a planarizing film and a liquid crystal layer. The pixel driving elements are disposed on the first substrate and between the first and second substrates. The first insulation layer is deposited over the first substrate and the pixel driving elements. The planarizing film is formed on the first insulation layer. This planarizing film provides a substantially flat surface over the first substrate to minimize a height of a step present between an area corresponding to each pixel driving element and an area locating adjacent to the pixel driving element on the first substrate. The second insulation layer is formed on the planarizing film. The display electrodes are formed on the second insulation layer and electrically connected to the pixel driving elements, respectively. The liquid crystal layer is located between the first substrate and said second substrate.
摘要:
A dry etching method includes the steps of etching a transparent electrode film by reactive ion etching with a first etching gas, changing the first etching gas to a second etching gas, and etching the transparent electrode film by reactive ion etching with the second etching gas. A chlorine containing gas is employed as the second etching gas.
摘要:
A method of manufacturing a polycrystalline silicon film having a particular field effect mobility is disclosed. A first polycrystalline silicon film is formed on a transparent insulation substrate. The surface of the silicon film is oxidized, and an amorphous silicon film is formed on the first polycrystalline silicon film and oxide layer. The amorphous silicon film is subjected to a solid phase growth process to be converted to a second polycrystalline silicon film. The field effect mobility of the second polycrystalline silicon film can be adjusted to a desired value by controlling the relative thicknesses of the first and second polycrystalline silicon films.
摘要:
A method of manufacturing a polycrystalline silicon film having a particular field effect mobility is disclosed. A first polycrystalline silicon film is formed on a transparent insulation substrate. The surface of the silicon film is oxidized, and an amorphous silicon film is formed on the first polycrystalline silicon film and oxide layer. The amorphous silicon film is subjected to a solid phase growth process to be converted to a second polycrystalline silicon film. The field effect mobility of the second polycrystalline silicon film can be adjusted to a desired value by controlling the relative thicknesses of the first and second polycrystalline silicon films.