摘要:
A method for isolating areas of silicon from a substrate 50 includes the steps of: providing a buried N+ region 52 in the substrate; forming an intrinsic epitaxial layer 12 onto the N+ region; etching trenches 18, 20 through the intrinsic epitaxial layer to thereby form a desired isolation region 16 of intrinsic epitaxial material; laterally etching a cavity 22 underneath the desired isolation region; and, forming an insulation layer 24 of insulation material along the bottom of the desired isolation region exposed by the former etching steps.
摘要:
A method of forming a thin silicon SOI layer by wafer bonding, the thin silicon SOI layer being substantially free of defects upon which semiconductor structures can be subsequently formed, is disclosed. The method comprises the steps of:a) providing a first wafer comprising a silicon substrate of a first conductivity type, a diffusion layer of a second conductivity type formed thereon and having a first etch characteristic, a thin epitaxial layer of the second conductivity type formed upon the diffusion layer and having a second etch characteristic different from the first etch characteristic of the diffusion layer, and a thin oxide layer formed upon the thin epitaxial layer;b) providing a second wafer comprising a silicon substrate having a thin oxide layer formed on a surface thereof;c) wafer bonding said first wafer to said second wafer;d) removing the silicon substrate of said first wafer in a controlled mechanical manner; ande) removing the diffusion layer of said first wafer using a selective dry low energy plasma process to expose the underlying thin epitaxial layer, the selective dry low energy plasma process providing an etch ratio of the first etch characteristic to the second etch characteristic such that the diffusion layer is removed with minimal formation of any shallow plasma radiation damage to the exposed underlying thin epitaxial layer.
摘要:
A method for isolating a film from a substrate 50 includes the steps of: providing an N+ layer 52 on the substrate 50; forming an insulation layer 54 onto the N+ doped layer 52; etching a pair of trenches 56, 58 through the insulation layer 52 to thereby form an isolation region 60 of insulation material; laterally etching a cavity 62 underneath the isolation region; and, forming a film 64 onto the isolation region.
摘要:
A void-free isolated semiconductor substrate is described which contains a pattern of substantially vertically sided trenches within a semiconductor body. The pattern of isolation trenches isolate regions of monocrystalline semiconductor material which may contain active and passive semiconductor devices. A first insulating layer is located upon the sidewalls of the trenches. The base or bottom of the trenches is open to the monocrystalline semiconductor body. An epitaxial layer extending from the base of the trenches fills the pattern of trenches up to a level from the upper surface of the trenches as specified approximately by the equation:y=0.34xwhere y is the distance between the epitaxial layer and the top surface and x is the trench width. The preferred range for the trench width x is about 10 micrometers or less. A polycrystalline silicon layer fills the additional portion of the pattern of trenches above the upper surfaces of the epitaxial layer. A second insulating layer is located on the polycrystalline silicon layer within the trenches for isolation of the pattern of trenches from the ambient. It is the dense epitaxial monocrystalline semiconductor which prevents the formation of voids within the pattern of trenches. The polycrystalline silicon layer above the epitaxial layer completely covers the undesirable sharp faceted structure at the top of the epitaxial semiconductor growth structure.
摘要:
A method for forming epitaxial grown silicon structure having substantially defect free outer surfaces and resulting structure is provided. A silicon substrate is provided, on which an epitaxial silicon crystal is grown. The outer surface layer of the silicon epitaxially grown silicon crystal will contain defective material which is removed by oxidation of the outer layer to silicon dioxide. This removes the defect containing outer layer, creating a new outer layer which is substantially defect free.
摘要:
A method of simultaneously producing doped silicon filled trenches in areas where a substrate contact is to be produced and trench isolation in other areas. Borosilicate glass lines the sidewalls of those trenches where a contact is desired and undoped epitaxially grown silicon fills all the trenches. Subsequent heat processing causes the boron in the borosilicate to dope the epitaxial silicon in those trenches. In the other trenches, the silicon fill remains undoped except at the bottom where a channel stop exists, thereby forming isolation trenches. The contacts formed over the trenches may be formed by selectively deposition of a highly doped silicon into an opening that overlies a portion of the trench and the adjacent substrate surface.
摘要:
A void-free isolated semiconductor substrate is described which contains a pattern of substantially vertically sided trenches within a semiconductor body. The pattern of isolation trenches isolate regions of monocrystalline semiconductor material which may contain active and passive semiconductor devices. A first insulating layer is located upon the sidewalls of the trenches. The base or bottom of the trenches is open to the monocrystalline semiconductor body. An epitaxial layer extending from the base of the trenches fills the pattern of trenches up to a level from the upper surface of the trenches as specified approximately by the equation:y=0.34xwhere y is the distance between the epitaxial layer and the top surface and x is the trench width. The preferred range for the trench width x is about 10 micrometers or less. A polycrystalline silicon layer fills the additional portion of the pattern of trenches above the upper surfaces of the epitaxial layer. A second insulating layer is located on the polycrystalline silicon layer within the trenches for isolation of the pattern of trenches from the ambient. It is the dense epitaxial monocrystalline semiconductor which prevents the formation of voids within the pattern of trenches. The polycrystalline silicon layer above the epitaxial layer completely covers the undesirable sharp faceted structure at the top of the epitaxial semiconductor growth structure.
摘要:
A method of simultaneously producing doped silicon filled trenches in areas where a substrate contact is to be produced and trench isolation in other areas. Borosilicate glass lines the sidewalls of those trenches where a contact is desired and undoped epitaxially grown silicon fills all the trenches. Subsequent heat processing causes the boron in the borosilicate to dope the epitaxial silicon in those trenches. In the other trenches, the silicon fill remains undoped except at the bottom where a channel stop exists, thereby forming isolation trenches. The contacts formed over the trenches may be formed by selectively deposition of a highly doped silicon into an opening that overlies a portion of the trench and the adjacent substrate surface.
摘要:
A method and apparatus for detecting an etching endpoint of a film on a substrate whereby a first excitation beam of light having a prescribed wavelength is provided, the first light beam substantially containing only a first harmonic component of light at that wavelength. The first light beam is directed at a prescribed incident angle to an interface between the film and the substrate, the first light beam being reflected off the interface to thereby provide a second light beam, the second light beam containing the first harmonic component of the first light beam and a generated second harmonic component. The generated second harmonic component is detected and a first output signal representative thereof is provided. A generated second harmonic component reference of the first light beam is produced and a second output signal representative of a generated second harmonic component reference is provided. The detected second harmonic component of the first light beam is normalized, as a function of the first and second output signals, in real-time, and a third output signal representative of an occurrence of a prescribed change in the normalized detected second harmonic component is provided. The prescribed change corresponds to the etching endpoint of the film on the substrate.
摘要:
A silicon substrate adapted for large scale integrated electronic circuits upon a lower surface has its upper surface coated with a highly porous heat sink film. The film is composed of a porous metal, preferably aluminum, formed by vacuum deposition (evaporation or sputtering) at a high pressure of an inactive gas. The gas can have a pressure of from about 0.5-100 millitorr, and a suitable gas is argon. A porous aluminum film with interconnected nucleation sites which are in the form of reservoir type cavities is manufactured on a silicon surface. The cavities tend to trap vapor of a liquid coolant in contact with the thin film contained in a package enclosing the substrate and its integrated circuit. Cooling fins can be used to cool the coolant.