Surfactant-enhanced epitaxy
    1.
    发明授权
    Surfactant-enhanced epitaxy 失效
    表面活性剂增强外延

    公开(公告)号:US5628834A

    公开(公告)日:1997-05-13

    申请号:US438004

    申请日:1995-05-09

    Abstract: The present invention broadly concerns layered structures of substantially-crystalline materials and processes for making such structures. More particularly, the invention concerns epitaxial growth of a substantially-crystalline layer of a first material on a substantially-crystalline second material different from the first material utilizing an approximately one monolayer thick monovalent surfactant element.

    Abstract translation: 本发明广泛涉及基本结晶材料的层状结构和制造这种结构的方法。 更具体地,本发明涉及使用大约一个单层厚度的一价表面活性剂元件,在不同于第一材料的基本上为结晶的第二材料上的第一材料的基本晶体层的外延生长。

    Method of forming a defect-free semiconductor layer on insulator
    5.
    发明授权
    Method of forming a defect-free semiconductor layer on insulator 失效
    在绝缘体上形成无缺陷半导体层的方法

    公开(公告)号:US4962051A

    公开(公告)日:1990-10-09

    申请号:US272977

    申请日:1988-11-18

    Applicant: H. Ming Liaw

    Inventor: H. Ming Liaw

    Abstract: An improved method of fabricating a defect-free semiconductor layer and a semiconductor on insulator structure is provided by forming an isoelectronically doped semiconductor layer between a substrate and an semiconductor layer. The isoelectronic dopant atoms are different in atomic size than the atoms of the semiconductor material, thus misfit dislocations are created at the interface of the isoelectronically doped semiconductor layer due to lattice mismatch. Impurities and defects are not only gettered to the misfit dislocation sites, but are also prevented from propagating to the epitaxial layer. These misfit dislocations are thermally stable and are confined in a plane parallel to the interfaces of the isoelectronically doped semiconductor layer, thus very effective gettering agents. If the isoelectroncially doped semiconductor layer us also a heavily doped buried layer, no misfit dislocations are desired because the buried layer is an active device layer. In this case the isoelectronic dopant atoms may offset the non-isoelectronic dopant atoms in atomic size, thus no misfit dislocations are formed.

    Abstract translation: 通过在衬底和半导体层之间形成等电子掺杂半导体层来提供制造无缺陷半导体层和绝缘体上半导体结构的改进方法。 等电子掺杂剂原子的原子尺寸与半导体材料的原子不同,因此由于晶格失配,在等电子掺杂半导体层的界面处产生失配位错。 杂质和缺陷不仅可以消除错配位错位点,而且可以防止传播到外延层。 这些失配位错是热稳定的,并且被限制在平行于等电子掺杂半导体层的界面的平面中,因此是非常有效的吸气剂。 如果等电子掺杂的半导体层也是重掺杂的掩埋层,则不需要失配位错,因为掩埋层是有源器件层。 在这种情况下,等电子掺杂剂原子可以以原子尺寸偏移非等电子掺杂原子,因此不会形成失配位错。

    Method of forming intermediate buffer films with low plastic deformation
threshold using lattice mismatched heteroepitaxy
    6.
    发明授权
    Method of forming intermediate buffer films with low plastic deformation threshold using lattice mismatched heteroepitaxy 失效
    使用晶格失配的异质外延形成具有低塑性变形阈值的中间缓冲膜的方法

    公开(公告)号:US4935385A

    公开(公告)日:1990-06-19

    申请号:US223036

    申请日:1988-07-22

    Abstract: Intermediate buffer films having a low plastic deformation threshold are provided for absorbing defects due to lattice mismatch and/or thermal coefficient of expansion mismatch between a substrate or layer support and an overlayer while concurrently providing a good template for subsequent crystalline growth at the overlayer. This is accomplished for diamond cubic structure substrates, such as Si or Ge or Si on sapphire or crystalline Si on glass, upon which are to be deposited lattice mismatch overlayers, such as, GaAs or ZnSe. Also, zinc blend type substrates, such as GaAs or InP may be employed with such intermediate buffer films. A characteristic of these intermediate buffer films is a substantially lower plastic deformation threshold compared to either the substrate support or the overlayer to be grown heteroepitaxially thereon. In particular, such high plastic deformable compound materials found suitable for such an intermediate buffer film are cubic III-V, II-VI or a I-VII zinc blend compound materials, respectively and specifically, (Zn.sub.X Cd.sub.Y Hg.sub.1-X-Y)(S.sub.A Se.sub.B Te.sub.1-A-B) and Cu(Cl.sub.X Br.sub.Y I.sub.1-X-Y) wherein X or Y respectively range between 0 and 1 such that X+ Y.ltoreq.1 and A and B respectively range between 0 and 1 such that A+B.ltoreq.1. Particular examples are GaAs, ZnSe, ZnS.sub.x Se.sub.1-x, CdS.sub.x Se.sub.1-x, HgS.sub.x Se.sub.1-x, CuCl, CuBr or CuI, et al.

    Abstract translation: 提供具有低塑性变形阈值的中间缓冲膜用于吸收由于晶格失配和/或基底或层载体与覆盖层之间的膨胀失配的热系数而引起的缺陷,同时为覆盖层上随后的晶体生长同时提供良好的模板。 这对于金刚石立方结构衬底(例如蓝宝石上的Si或Ge或玻璃上的晶体Si),其上将沉积的晶格失配覆盖层(例如GaAs或ZnSe)而言是完成的。 此外,可以使用诸如GaAs或InP的锌共混型衬底与这种中间缓冲膜。 与衬底支撑体或异质外延生长的覆盖层相比,这些中间缓冲膜的特征是相当低的塑性变形阈值。 特别地,适用于这种中间缓冲膜的这种高塑性可变形化合物材料分别是立方体III-V,II-VI或I-VII锌混合物,分别具体地(ZnXCdYHg1-XY)(SASeBTe1-AB) 和Cu(ClXBrYI1-XY),其中X或Y分别在0和1之间变化,使得X + Y 1和A和B分别在0和1之间变化,使得A + B <1。 具体实例是GaAs,ZnSe,ZnSxSe1-x,CdSxSe1-x,HgSxSe1-x,CuCl,CuBr或CuI等。

Patent Agency Ranking