Abstract:
Provided are a flexible circuit board with excellent bendability and durability against hard conditions particularly in a repeated bend portion having a small curvature radius, and a method of producing the same. The flexible circuit board includes a resin layer and a wiring formed of a metal foil and is used with a bend portion provided at least one position of the wiring. The metal foil is made of a metal having a cubic crystal structure, and a cross section of the wiring cut in a thickness direction from a ridge line in the bend portion forms a principal orientation on any one of planes within a range of (20 1 0) to (1 20 0) in a rotation direction from (100) to (110) with [001] set as a zone axis. The wiring is formed so that the metal foil is made of a metal having a cubic crystal structure, and that the ridge line in the bend portion has an angle in a range of 2.9° to 87.1° relative to one of fundamental crystal axes in a surface of the metal foil.
Abstract:
In order to provide a flexible laminate circuit board using a surface treated copper foil satisfying all of a bonding strength of a copper foil with respect to polyimide, acid resistance, and etching property, in a flexible laminate circuit board formed by a copper foil on the surface of a polyimide resin layer, the copper foil is a surface treated copper foil formed by depositing an Ni—Zn alloy onto at least one surface of a untreated copper foil, and the Zn deposition amount in the deposited Ni—Zn alloy is 6% or more and 15% or less of the (Ni deposition amount+Zn deposition amount), and the Zn deposition amount is 0.08 mg/dm2 or more to provide a flexible cupper clad laminate.
Abstract:
In order to provide a flexible laminate circuit board using a surface treated copper foil satisfying all of a bonding strength of a copper foil with respect to polyimide, acid resistance, and etching property, in a flexible laminate circuit board formed by a copper foil on the surface of a polyimide resin layer, the copper foil is a surface treated copper foil formed by depositing an Ni—Zn alloy onto at least one surface of a untreated copper foil, and the Zn deposition amount in the deposited Ni—Zn alloy is 6% or more and 15% or less of the (Ni deposition amount+Zn deposition amount), and the Zn deposition amount is 0.08 mg/dm2 or more to provide a flexible copper clad laminate.
Abstract:
There are provided a dye-sensitized solar cell easy to manufacture, high in power extraction efficiency, and suitable for upsizing, and a method for manufacturing the dye-sensitized solar cell. The dye-sensitized solar cell 10 comprises a transparent substrate 12; a porous semiconductor layer 14 having a dye adsorbed thereto; a conductive metal film 16; and a substrate 20 provided with a conductive film 18 and arranged opposite to the transparent substrate 12. A large number of deep poriform through-holes 24 are irregularly formed in the conductive metal film 16. The dye-sensitized solar cell 10 includes a large number of porous semiconductor particles 25 one end of which is exposed to an electrolyte 22 through the conductive metal film 16 and the other end of which joins the porous semiconductor layer 14.