摘要:
A semiconductor device (70) includes a memory cell having a select transistor (67) and a storage transistor (65) having a relatively uniform tunnel dielectric thickness under both the floating gate (651) of the storage transistor and the select gate (671) of the select transistor (67). The select transistor (67) is adjacent to the drain region (68) for the memory cell to nearly eliminate a drain disturb problem. During programming, the control gate (652) is at a negative potential, and the drain region (68) is at a positive potential. The drain potential is sufficiently low to not degrade the tunnel dielectric layer (42) of the select transistor (67). During erase, a positive potential is applied to the control gate (652). The relatively uniform tunnel dielectric layer (42) thickness of the select transistor (67) allows for a faster operating device by increasing the read current of the memory device.
摘要:
A semiconductor device (70) includes a memory cell having a select transistor (67) and a storage transistor (65) having a relatively uniform tunnel dielectric thickness under both the floating gate (651) of the storage transistor and the select gate (671) of the select transistor (67). The select transistor (67) is adjacent to the drain region (68) for the memory cell to nearly eliminate a drain disturb problem. During programming, the control gate (652) is at a negative potential, and the drain region (68) is at a positive potential. The drain potential is sufficiently low to not degrade the tunnel dielectric layer (42) of the select transistor (67). During erase, a positive potential is applied to the control gate (652). The relatively uniform tunnel dielectric layer (42) thickness of the select transistor (67) allows for a faster operating device by increasing the read current of the memory device.
摘要:
In one embodiment, a method for discharging a semiconductor device includes providing a semiconductor substrate, forming a hole blocking dielectric layer over the semiconductor substrate, forming nanoclusters over the hole blocking dielectric layer, forming a charge trapping layer over the nanoclusters, and applying an electric field to the nanoclusters to discharge the semiconductor device. Applying the electric field may occur while applying ultraviolet (UV) light. In one embodiment, the hole blocking dielectric layer comprises forming the hole blocking dielectric layer having a thickness greater than approximately 50 Angstroms.
摘要:
A non-volatile memory having a thin film dielectric storage element is programmed by hot carrier injection (HCI) and erased by tunneling. The typical structure for the memory cells for this type of memory is silicon, oxide, nitride, oxide, and silicon (SONOS). The hot carrier injection provides relatively fast programming for SONOS, while the tunneling provides for erase that avoids the difficulties with the hot hole erase (HHE) type erase that generally accompanies hot carrier injection for programming. HHE is significantly more damaging to dielectrics leading to reliability issues. HHE also has a relatively narrow area of erasure that may not perfectly match the pattern for the HCI programming leaving an incomplete erasure. The tunnel erase effectively covers the entire area so there is no concern about incomplete erase. Although tunnel erase is slower than HHE, erase time is generally less critical in a system operation than is programming time.
摘要:
A non volatile memory includes a plurality of transistors having a non conductive storage medium. The transistors are erased by injecting holes into the storage medium from both the source edge region and drain edge region of the transistor. In one example, the storage medium is made from silicon nitride isolated from the underlying substrate and overlying gate by silicon dioxide. The injection of holes in the storage medium generates two hole distributions having overlapping portions. The combined distribution of the overlapping portions is above at least a level of the highest concentration of program charge in the overlap region of the storage medium. In one example, the transistors are programmed by hot carrier injection. In some examples, the sources of groups of transistors of the memory are decoded.
摘要:
A technique for reducing the read gate voltage in a memory array including memory cells having a transistor for storing charge indicative of the value stored in the cell. In one example, a voltage greater than the substrate voltage is applied to the sources of the transistors of the memory cells of the array to increase the threshold voltage of a transistor due the body effect. The read gate voltage is greater than the source voltage which is greater than the substrate voltage. A non read voltage of less than the source voltage is applied to the gates of the transistors of the unselected rows to reduce leakage current. With this embodiment, the threshold voltages of transistors having an erased state can be less than 0V. With some embodiments, the read disturb caused by a gate voltage can be reduced due to the reduction in the gate voltage. In other examples, a negative voltage is applied to the gates of unselected rows to prevent leakage current. Accordingly, the voltage thresholds of transistors having an erased state can be reduced, wherein the read gate voltage can be reduced as well.
摘要:
A split gate memory cell has a select gate, a control gate, and a charge storage structure. The select gate includes a first portion located over the control gate and a second portion not located over the control gate. In one example, the first portion of the select gate has a sidewall aligned with a sidewall of the control gate and aligned with a sidewall of the charge storage structure. In one example, the control gate has a p-type conductivity. In one example, the gate can be programmed by a hot carrier injection operation and can be erased by a tunneling operation.
摘要:
A method for making a semiconductor device having non-volatile memory cell transistors and transistors of another type is provided. In the method, a substrate is provided having an NVM region, a high voltage (HV) region, and a low voltage (LV) region. The method includes forming a gate dielectric layer on the HV and LV regions. A tunnel oxide layer is formed over the substrate in the NVM region and the gate dielectric in the HV and LV regions. A first polysilicon layer is formed over the tunnel dielectric layer and gate dielectric layer. The first polysilicon layer is patterned to form NVM floating gates. An ONO layer is formed over the first polysilicon layer. A single etch removal step is used to form gates for the HV transistors from the first polysilicon layer while removing the first polysilicon layer from the LV region.
摘要:
A method of discharging a charge storage location of a transistor of a non-volatile memory includes applying first and second voltages to a control gate and a well region, respectively, of the transistor. The first voltage is applied to the control gate of the transistor, wherein the control gate has at least a portion located adjacent to a select gate of the transistor. The transistor includes a charge storage location having nanoclusters disposed within dielectric material of a structure of the transistor located below the control gate. Lastly, a second voltage is applied to the well region located below the control gate. Applying the first voltage and the second voltage generates a voltage differential across the structure for discharging electrons from the nanoclusters of the charge storage location.
摘要:
Testing a non volatile memory by exposing the non volatile memory to particle radiation (e.g. xenon ions) to emulate memory cell damage due to data state changing events of a non volatile memory cell. After the exposing, the memory cells are subjected to tests and the results of the tests are used to develop reliability indications of the non volatile memory. Integrated circuits with non volatile memories of the same design are provided. Reliability representations of the integrated circuits can be made with respect to a number of data state charging events based on the exposure and subsequent tests.