摘要:
The present invention provides a tri-gate lower power device and method for fabricating that tri-gate semiconductor device. The tri-gate device includes a first gate [455] located over a high voltage gate dielectric [465] within a high voltage region [460], a second gate [435] located over a low voltage gate dielectric [445] within a low voltage core region [440] and a third gate [475] located over an intermediate core oxide [485] within an intermediate core region [480]. One method of fabrication includes forming a high voltage gate dielectric layer [465] over a semiconductor substrate [415], implanting a low dose of nitrogen [415a] into the semiconductor substrate [415] in a low voltage core region [440], and forming a core gate dielectric layer [445] over the low voltage core region [440], including forming an intermediate core gate dielectric layer [485] over an intermediate core region [480].
摘要:
The present invention provides a tri-gate lower power device and method for fabricating that tri-gate semiconductor device. The tri-gate device includes a first gate [455] located over a high voltage gate dielectric [465] within a high voltage region [460], a second gate [435] located over a low voltage gate dielectric [445] within a low voltage core region [440] and a third gate [475] located over an intermediate core oxide [485] within an intermediate core region [480]. One method of fabrication includes forming a high voltage gate dielectric layer [465] over a semiconductor substrate [415], implanting a low dose of nitrogen [415a] into the semiconductor substrate [415] in a low voltage core region [440], and forming a core gate dielectric layer [445] over the low voltage core region [440], including forming an intermediate core gate dielectric layer [485] over an intermediate core region [480].
摘要:
The present invention facilitates semiconductor device fabrication by providing mechanisms for utilizing different isolation schemes within embedded memory and other logic portions of a device. The isolation mechanism of the embedded memory portion is improved relative to other portions of the device by increasing dopant concentrations or reducing the depth of the dopant profiles within well regions of the embedded memory array. As a result, smaller isolation spacing can be employed thereby permitting a more compact array. The isolation mechanism of the logic portion is relatively less than that of the embedded memory portion, which permits greater operational speed for the logic.
摘要:
A method (10) of forming a MIM (metal insulator metal) capacitor is disclosed whereby adverse affects associated with copper diffusion are mitigated even as the capacitor is scaled down. A sidewall spacer (156) is formed against an edge (137) of a layer of bottom electrode/copper diffusion barrier material (136), an edge (151) of a layer of capacitor dielectric material (150) and at least some of an edge (153) of a layer of top electrode material. The sidewall spacer (156) is dielectric or non-conductive and mitigates “shorting” currents that can develop between the plates as a result of copper diffusion. Bottom electrode diffusion barrier material (136) mitigates copper diffusion and/or copper drift, thereby reducing the likelihood of premature device failure.
摘要:
The present invention facilitates semiconductor device fabrication by providing mechanisms for utilizing different isolation schemes within embedded memory and other logic portions of a device. The isolation mechanism of the embedded memory portion is improved relative to other portions of the device by increasing dopant concentrations or reducing the depth of the dopant profiles within well regions of the embedded memory array. As a result, smaller isolation spacing can be employed thereby permitting a more compact array. The isolation mechanism of the logic portion is relatively less than that of the embedded memory portion, which permits greater operational speed for the logic.
摘要:
The present invention facilitates semiconductor device fabrication by providing mechanisms for utilizing different isolation schemes within embedded memory and other logic portions of a device. The isolation mechanism of the embedded memory portion is improved relative to other portions of the device by increasing dopant concentrations or reducing the depth of the dopant profiles within well regions of the embedded memory array. As a result, smaller isolation spacing can be employed thereby permitting a more compact array. The isolation mechanism of the logic portion is relatively less than that of the embedded memory portion, which permits greater operational speed for the logic.
摘要:
The present invention facilitates semiconductor device fabrication by providing mechanisms for utilizing different isolation schemes within embedded memory and other logic portions of a device. The isolation mechanism of the embedded memory portion is improved relative to other portions of the device by increasing dopant concentrations or reducing the depth of the dopant profiles within well regions of the embedded memory array. As a result, smaller isolation spacing can be employed thereby permitting a more compact array. The isolation mechanism of the logic portion is relatively less than that of the embedded memory portion, which permits greater operational speed for the logic.
摘要:
The present invention facilitates semiconductor device fabrication by providing mechanisms for utilizing different isolation schemes within embedded memory and other logic portions of a device. The isolation mechanism of the embedded memory portion is improved relative to other portions of the device by increasing dopant concentrations or reducing the depth of the dopant profiles within well regions of the embedded memory array. As a result, smaller isolation spacing can be employed thereby permitting a more compact array. The isolation mechanism of the logic portion is relatively less than that of the embedded memory portion, which permits greater operational speed for the logic.
摘要:
The present invention pertains to formation of a transistor in a manner that mitigates overlap capacitances, thereby facilitating, among other things, enhanced switching speeds. More particularly, a gate stack of the transistor is formed to include an optional layer of poly-SiGe and a layer of poly-Si, where at least one or the layers comprises carbon. The stack may also include a polysilicon seed layer that can also comprise carbon. The carbon changes the components of sidewall passivation materials and affects etch rates during an etching process, thereby facilitating isotropic etching. The changed passivation materials coupled with an enhanced sensitivity of the poly-SiGe and carbon-doped poly-SiGe layer to an etchant utilized in the etching process causes the stack to have a notched appearance. The tapered configuration of the gate stack provides little, if any, area for dopants that may migrate under the gate structure to overlap the conductive layers in the stack, and thus mitigates the opportunity for overlap capacitances to arise.
摘要:
A method (200) of forming an isolation structure is disclosed, and includes forming an isolation trench in a semiconductor body (214) associated with an isolation region, and filling a bottom portion of the isolation trench with an implant masking material (216). An angled ion implant is performed into the isolation trench (218) after having the bottom portion thereof filled with the implant masking material, thereby forming a threshold voltage compensation region in the semiconductor body. Subsequently, the isolation trench is filled with a dielectric material (220).