摘要:
Method of forming a lightly phosphorous doped silicon film. A substrate is provided. A process gas comprising a phosphorous source gas and a disilane gas is used to form a lightly phosphorous doped silicon film on the substrate. The diluted phosphorous source gas has a phosphorous concentration of 1%. The phosphorous source gas and the disilane gas have a flow ratio less than 1:100. The lightly phosphorous doped silicon film has a phosphorous doping concentration less than 1×1020 atoms/cm3.
摘要翻译:形成轻掺磷硅膜的方法。 提供基板。 使用包含磷源气体和乙硅烷气体的工艺气体在衬底上形成轻掺磷硅膜。 稀释的磷源气体的磷浓度为1%。 磷源气体和乙硅烷气体的流量比小于1:100。 轻掺磷硅膜的磷掺杂浓度小于1×10 20原子/ cm 3。
摘要:
Method of forming a lightly phosphorous doped silicon film. A substrate is provided. A process gas comprising a phosphorous source gas and a disilane gas is used to form a lightly phosphorous doped silicon film on the substrate. The diluted phosphorous source gas has a phosphorous concentration of 1%. The phosphorous source gas and the disilane gas have a flow ratio less than 1:100. The lightly phosphorous doped silicon film has a phosphorous doping concentration less than 1×1020 atoms/cm3.
摘要翻译:形成轻掺磷硅膜的方法。 提供基板。 使用包含磷源气体和乙硅烷气体的工艺气体在衬底上形成轻掺磷硅膜。 稀释的磷源气体的磷浓度为1%。 磷源气体和乙硅烷气体的流量比小于1:100。 轻掺磷硅膜的磷掺杂浓度小于1×10 20原子/ cm 3。
摘要:
A method for depositing doped polycrystalline or amorphous silicon film. The method includes placing a substrate onto a susceptor. The susceptor includes a body having a resistive heater therein and a thermocouple in physical contact with the resistive heater. The susceptor is located in the process chamber such that the process chamber has a top portion above the susceptor and a bottom portion below the susceptor. The method further includes heating the susceptor. The method further includes providing a process gas mix into the process chamber through a shower head located on the susceptor. The process gas mix includes a silicon source gas, a dopant gas, and a carrier gas. The carrier gas includes nitrogen. The method further includes forming the doped silicon film from the silicon source gas.
摘要:
Method of forming a lightly phosphorous doped silicon film. A substrate is provided. A process gas comprising a phosphorous source gas and a disilane gas is used to form a lightly phosphorous doped silicon film on the substrate. The diluted phosphorous source gas has a phosphorous concentration of 1%. The phosphorous source gas and the disilane gas have a flow ratio less than 1:100. The lightly phosphorous doped silicon film has a phosphorous doping concentration less than 1×1020 atoms/cm3.
摘要翻译:形成轻掺磷硅膜的方法。 提供基板。 使用包含磷源气体和乙硅烷气体的工艺气体在衬底上形成轻掺磷硅膜。 稀释的磷源气体的磷浓度为1%。 磷源气体和乙硅烷气体的流量比小于1:100。 轻掺磷硅膜的磷掺杂浓度小于1×10 20原子/ cm 3。
摘要:
Provided herein is an emissivity-change-free pumping plate kit used in a single wafer chamber. This kit comprises a top open pumping plate, and optionally a skirt and/or a second stage choking plate. The skirt may be installed around the wafer heater, underneath the wafer heater, or along the chamber body inside the chamber. The choking plate is installed downstream of the top open pumping plate along the purge gas flow. Also provided is a method of preventing emissivity change and further providing optimal film thickness uniformity during wafer processing by utilizing such kit in the chamber.
摘要:
A silicon nitride layer is formed over transistor gates while the processing temperature is relatively high, typically at least 500° C., and the pressure is relatively high, typically at least 50 Torr, to obtain a relatively high rate of formation of the silicon nitride layer. Processing conditions are controlled so as to more uniformly form the silicon nitride layer. Generally, the ratio of the NH3 gas to the silicon-containing gas by volume is selected sufficiently high so that, should the surface have a low region between transistor gates which is less than 0.15 microns wide and have a height-to-width ratio of at least 1.0, as well as an entirely flat area of at least 5 microns by 5 microns, the layer forms at a rate of not more than 25% faster on the flat area than on a base of the low region.
摘要:
Numerous embodiments of a method for depositing a layer of nano-crystal silicon on a substrate. In one embodiment of the present invention, a substrate is placed in a single wafer chamber and heated to a temperature between about 300° C. to about 490° C. A silicon source is also fed into the single wafer chamber.
摘要:
In one embodiment, a method for forming a tungsten barrier material on a substrate is provided which includes depositing a tungsten layer on a substrate during a vapor deposition process and exposing the substrate sequentially to a tungsten precursor and a nitrogen precursor to form a tungsten nitride layer on the tungsten layer. Some examples provide that the tungsten layer may be deposited by sequentially exposing the substrate to the tungsten precursor and a reducing gas (e.g., diborane or silane) during an atomic layer deposition process. The tungsten layer may have a thickness of about 50 Å or less and tungsten nitride layer may have an electrical resistivity of about 380 μΩ-cm or less. Other examples provide that a tungsten bulk layer may be deposited on the tungsten nitride layer by a chemical vapor deposition process.
摘要:
A method for depositing a tungsten nitride layer is provided. The method includes a cyclical process of alternately adsorbing a tungsten-containing compound and a nitrogen-containing compound on a substrate. The barrier layer has a reduced resistivity, lower concentration of fluorine, and can be deposited at any desired thickness, such as less than 100 angstroms, to minimize the amount of barrier layer material.
摘要:
A method for depositing a tungsten nitride layer is provided. The method includes a cyclical process of alternately adsorbing a tungsten-containing compound and a nitrogen-containing compound on a substrate. The barrier layer has a reduced resistivity, lower concentration of fluorine, and can be deposited at any desired thickness, such as less than 100 angstroms, to minimize the amount of barrier layer material.