EMR sensor and transistor formed on the same substrate
    1.
    发明授权
    EMR sensor and transistor formed on the same substrate 有权
    EMR传感器和晶体管形成在同一基板上

    公开(公告)号:US08059373B2

    公开(公告)日:2011-11-15

    申请号:US11549879

    申请日:2006-10-16

    IPC分类号: G11B5/33

    CPC分类号: G11B5/3993

    摘要: Magnetic sensing chips and methods of fabricating the magnetic sensing chips are disclosed. A magnetic sensing chip as described herein includes an EMR sensor formed on a substrate from multiple semiconductor layers. One or more of the semiconductor layers form a quantum well comprising a two-dimensional electron gas (2DEG) or hole gas (2DHG). The magnetic sensing chip also includes one or more transistors formed on the substrate from the multiple semiconductor layers. The transistor(s) likewise include a quantum well comprising a 2DEG or 2DHG. The EMR sensor and the transistor(s) are connected by one or more connections so that the transistor(s) amplifies data signals from the EMR sensor.

    摘要翻译: 公开了磁感测芯片和制造磁感测芯片的方法。 如本文所述的磁传感芯片包括形成在来自多个半导体层的衬底上的EMR传感器。 一个或多个半导体层形成包含二维电子气(2DEG)或空穴气体(2DHG)的量子阱。 磁感测芯片还包括从多个半导体层形成在衬底上的一个或多个晶体管。 晶体管同样包括包含2DEG或2DHG的量子阱。 EMR传感器和晶体管通过一个或多个连接连接,使得晶体管放大来自EMR传感器的数据信号。

    EMR SENSOR AND TRANSISTOR FORMED ON THE SAME SUBSTRATE
    2.
    发明申请
    EMR SENSOR AND TRANSISTOR FORMED ON THE SAME SUBSTRATE 有权
    EMR传感器和晶体管在相同的基板上形成

    公开(公告)号:US20080088982A1

    公开(公告)日:2008-04-17

    申请号:US11549879

    申请日:2006-10-16

    IPC分类号: G11B5/33

    CPC分类号: G11B5/3993

    摘要: Magnetic sensing chips and methods of fabricating the magnetic sensing chips are disclosed. A magnetic sensing chip as described herein includes an EMR sensor formed on a substrate from multiple semiconductor layers. One or more of the semiconductor layers form a quantum well comprising a two-dimensional electron gas (2DEG) or hole gas (2DHG). The magnetic sensing chip also includes one or more transistors formed on the substrate from the multiple semiconductor layers. The transistor(s) likewise include a quantum well comprising a 2DEG or 2DHG. The EMR sensor and the transistor(s) are connected by one or more connections so that the transistor(s) amplifies data signals from the EMR sensor.

    摘要翻译: 公开了磁感测芯片和制造磁感测芯片的方法。 如本文所述的磁传感芯片包括形成在来自多个半导体层的衬底上的EMR传感器。 一个或多个半导体层形成包含二维电子气(2DEG)或空穴气体(2DHG)的量子阱。 磁感测芯片还包括从多个半导体层形成在衬底上的一个或多个晶体管。 晶体管同样包括包含2DEG或2DHG的量子阱。 EMR传感器和晶体管通过一个或多个连接连接,使得晶体管放大来自EMR传感器的数据信号。

    Planar extraordinary magnetoresistance sensor
    3.
    发明授权
    Planar extraordinary magnetoresistance sensor 有权
    平面非凡磁阻传感器

    公开(公告)号:US07203036B2

    公开(公告)日:2007-04-10

    申请号:US10909122

    申请日:2004-07-30

    IPC分类号: G11B5/39 G01R33/02 G01R27/08

    摘要: An extraordinary magnetoresistance (EMR) sensor has a planar shunt and planar leads formed on top of the sensor and extending downward into the semiconductor active region, resulting. Electrically conductive material, such as Au or AuGe, is first deposited into lithographically defined windows on top of the sensor. After liftoff of the photoresist a rapid thermal annealing process causes the conductive material to diffuse downward into the semiconductor material and make electrical contact with the active region. The outline of the sensor is defined by reactive etching or other suitable etching techniques. Insulating backfilling material such as Al-oxide is deposited to protect the EMR sensor and the edges of the active region. Chemical mechanical polishing of the structure results in a planar sensor that does not have exposed active region edges.

    摘要翻译: 非常大的磁阻(EMR)传感器具有平面分流和平面引线,形成在传感器的顶部并向下延伸到半导体有源区域中。 诸如Au或AuGe的导电材料首先沉积在传感器顶部的光刻定义的窗口中。 在光致抗蚀剂剥离之后,快速热退火工艺使得导电材料向下扩散到半导体材料中并与活性区电接触。 传感器的轮廓由反应性蚀刻或其他合适的蚀刻技术限定。 沉积诸如Al氧化物的回填材料的绝缘以保护EMR传感器和有源区域的边缘。 结构的化学机械抛光导致没有暴露的有源区边缘的平面传感器。

    Current-perpendicular-to-plane magnetoresistive sensor with free layer stabilized by in-stack orthogonal magnetic coupling
    5.
    发明授权
    Current-perpendicular-to-plane magnetoresistive sensor with free layer stabilized by in-stack orthogonal magnetic coupling 有权
    电流垂直于平面的磁阻传感器,具有通过堆叠内正交磁耦合稳定的自由层

    公开(公告)号:US07199984B2

    公开(公告)日:2007-04-03

    申请号:US10802639

    申请日:2004-03-16

    IPC分类号: G11B5/39 G11B5/33 G11B5/127

    摘要: A magnetically-coupled structure has two ferromagnetic layers with their in-plane magnetization directions coupled orthogonally across an electrically-conducting spacer layer that induces the direct orthogonal magnetic coupling. The structure has application for in-stack biasing in a current-perpendicular-to-the-plane (CPP) magnetoresistive sensor. One of the ferromagnetic layers of the structure is a biasing ferromagnetic layer and the other ferromagnetic layer is the sensor free layer. An antiferromagnetic layer exchange-couples the biasing layer to fix its moment parallel to the moment of the sensor pinned layer. This allows a single annealing step to be used to set the magnetization direction of the biasing and pinned layers. The electrically-conducting spacer layer, the biasing layer and the antiferromagnetic layer that exchange-couples the biasing layer may all extend beyond the edges of the sensor stack.

    摘要翻译: 磁耦合结构具有两个铁磁层,它们的面内磁化方向正交地耦合在导电直接磁耦合的导电间隔层上。 该结构具有在电流垂直于平面(CPP)磁阻传感器中的堆叠偏置的应用。 该结构的铁磁层之一是偏置铁磁层,另一个铁磁层是传感器自由层。 反铁磁层将偏置层交换耦合以固定其平行于传感器固定层的力矩的力矩。 这允许使用单个退火步骤来设定偏置和钉扎层的磁化方向。 交换耦合偏置层的导电间隔层,偏置层和反铁磁层可以全部延伸超出传感器堆叠的边缘。

    Extraordinary magnetoresistance sensor with perpendicular magnetic biasing by an antiferromagnetic/ferromagnetic exchange-coupled structure
    6.
    发明授权
    Extraordinary magnetoresistance sensor with perpendicular magnetic biasing by an antiferromagnetic/ferromagnetic exchange-coupled structure 有权
    具有反铁磁/铁磁交换耦合结构的垂直磁偏置的非凡磁阻传感器

    公开(公告)号:US07167346B2

    公开(公告)日:2007-01-23

    申请号:US10883204

    申请日:2004-06-30

    IPC分类号: G11B5/33

    摘要: An extraordinary magnetoresistance (EMR) sensor has an antiferromagnetic/ferromagnetic exchange-coupled bilayer structure on top of the EMR active film. The ferromagnetic layer in the bilayer structure has perpendicular magnetic anisotropy and is exchange-biased by the antiferromagnetic layer. The antiferromagnetic/ferromagnetic bilayer structure provides a magnetic field perpendicular to the plane of the EMR active film to bias the magnetoresistance vs. field response of the EMR sensor. The ferromagnetic layer may be formed of any of the ferromagnetic materials useful for perpendicular magnetic recording, and is prepared in a way that its anisotropy axis is significantly out-of-plane. The antiferromagnetic layer is formed of any of the known Mn alloys, such as PtMn, NiMn, FeMn, IrMn, PdMn, PtPdMn and RhMn, or any of the insulating antiferromagnetic materials, such as those based on the cobalt oxide and nickel oxide antiferromagnetic materials.

    摘要翻译: 非常大的磁阻(EMR)传感器在EMR活性膜的顶部具有反铁磁/铁磁交换耦合双层结构。 双层结构中的铁磁层具有垂直的磁各向异性,并被反铁磁层交换偏置。 反铁磁/铁磁双层结构提供垂直于EMR有源膜的平面的磁场,以偏置EMR传感器的磁阻与场响应。 铁磁层可以由用于垂直磁记录的任何铁磁材料形成,并且以使其各向异性轴显着超出平面的方式制备。 反铁磁层由任何已知的Mn合金形成,例如PtMn,NiMn,FeMn,IrMn,PdMn,PtPdMn和RhMn,或任何绝缘反铁磁材料,例如基于氧化钴和氧化镍反铁磁材料的那些 。

    Magnetic memory with tunnel junction memory cells and phase transition material for controlling current to the cells
    7.
    发明授权
    Magnetic memory with tunnel junction memory cells and phase transition material for controlling current to the cells 有权
    具有隧道结存储单元的磁存储器和用于控制电流到电池的相变材料

    公开(公告)号:US06653704B1

    公开(公告)日:2003-11-25

    申请号:US10254432

    申请日:2002-09-24

    IPC分类号: H01L2982

    CPC分类号: H01L27/224

    摘要: A magnetic random access memory (MRAM) array includes a plurality of magnetic tunnel junction (MTJ) memory cells and a plurality of non-electronic switching elements, each MTJ memory cell and an associated switching element being in electrical series connection and located between the bit and word lines of the array. The switching element is a layer of vanadium dioxide, a material that exhibits a first order phase transition at a transition temperature of approximately 65° C. from a low-temperature monoclinic (semiconducting) to a high-temperature tetragonal (metallic) crystalline structure. This phase transition is accompanied by a change in electrical resistance from high resistance at room temperature to low resistance above the transition temperature. To read a memory cell, the vanadium dioxide switching element associated with that cell is heated to lower the resistance of the switching element to allow sense current to pass through the cell, thereby enabling the memory state of the cell to be read.

    摘要翻译: 磁性随机存取存储器(MRAM)阵列包括多个磁隧道结(MTJ)存储器单元和多个非电子开关元件,每个MTJ存储单元和相关联的开关元件处于电串联连接并且位于位 和数组的字线。 开关元件是一层二氧化钒,这是从低温单斜晶(半导体)到高温四方晶(金属)晶体结构在大约65℃的转变温度下呈现一阶相变的材料。 该相变伴随着电阻从室温下的高电阻到高于转变温度的低电阻。 为了读取存储单元,加热与该单元相关联的二氧化钒开关元件以降低开关元件的电阻,以允许感测电流通过单元,从而使得能够读取单元的存储状态。

    Magnetic devices and magnetic media with graphene overcoat
    10.
    发明授权
    Magnetic devices and magnetic media with graphene overcoat 有权
    磁性器件和磁性介质与石墨烯外涂层

    公开(公告)号:US09305571B2

    公开(公告)日:2016-04-05

    申请号:US12646851

    申请日:2009-12-23

    摘要: A magnetic disk according to one embodiment includes a recording layer; and a layer of graphene formed above the recording layer. A nucleation layer may be formed between the recording layer and the graphene layer in some approaches. A magnetic device according to another embodiment includes a transducer; a nucleation layer formed above the transducer; and a layer of graphene formed on the nucleation layer. A method according to one embodiment includes forming a nucleation layer above a magnetic layer of a magnetic disk or magnetic device; and forming a layer of graphene on the nucleation layer. A method according to another embodiment includes depositing SiC above a magnetic layer of a magnetic disk or magnetic device, the SiC being equivalent to several monolayers thick; and surface heating the SiC to selectively evaporate some of the Si from the SiC for forming a layer of graphene on a SiC layer. Additional products and methods are also presented.

    摘要翻译: 根据一个实施例的磁盘包括记录层; 以及形成在记录层上方的一层石墨烯。 在一些方法中,可以在记录层和石墨烯层之间形成成核层。 根据另一实施例的磁性装置包括换能器; 形成在换能器上方的成核层; 并在成核层上形成一层石墨烯。 根据一个实施方案的方法包括在磁盘或磁性装置的磁性层上形成成核层; 并在成核层上形成一层石墨烯。 根据另一实施例的方法包括在磁盘或磁性装置的磁性层上沉积SiC,所述SiC相当于多个单层厚度; 并表面加热SiC以选择性地从SiC中蒸发出一些Si,以在SiC层上形成一层石墨烯。 还介绍了其他产品和方法。