Abstract:
The present disclosure provides electroporation cartridges for single use electroporation as well as electroporation cartridges for automated batch processing, electroporation instruments and systems and methods of electroporation using these devices and systems. In some embodiments, electroporation cartridges comprise an electroporation chamber defined by an elongate body, a first electrode at a proximal end and a second electrode at a distal end of a chamber. Electroporation systems of the disclosure include one or more components including a pulse generator, compartments for placing either flow-through or single use electroporation cartridges, components for storage of cells, cooling and pre-cooling mechanisms, removably insertable modular casings having compartments for holding and arranging electroporation system and reagent components, one or more pumps for moving sample through the system, and processors and controllers.
Abstract:
A biological analysis system is provided. The system comprises a sample block assembly. The sample block assembly comprises a sample block configured to accommodate a sample holder, the sample holder configured to receive a plurality of samples. The system also comprises a control system configured to cycle the plurality of samples through a series of temperatures. The system further comprises an automated tray comprising a slide assembly, the tray configured to reversibly slide the sample block assembly from a closed to an open position to allow user access to the plurality of sample holders.
Abstract:
A thermal block assembly including a sample block and two or more thermoelectric devices, is disclosed. The sample block has a top surface configured to receive a plurality of reaction vessels and an opposing bottom surface. The thermoelectric devices are operably coupled to the sample block, wherein each thermoelectric device includes a housing for a thermal sensor and a thermal control interface with a controller. Each thermoelectric device is further configured to operate independently from each other to provide a substantially uniform temperature profile throughout the sample block.
Abstract:
A thermal block assembly including a sample block and two or more thermoelectric devices, is disclosed. The sample block has a top surface configured to receive a plurality of reaction vessels and an opposing bottom surface. The thermoelectric devices are operably coupled to the sample block, wherein each thermoelectric device includes a housing for a thermal sensor and a thermal control interface with a controller. Each thermoelectric device is further configured to operate independently from each other to provide a substantially uniform temperature profile throughout the sample block.
Abstract:
Multichannel pipettes, electroporation systems utilizing the multichannel pipettes and methods for electroporating a cell. The electroporation system includes a multichannel pipette, a pipette tip(s), a pipette docking assembly, and a pulse generator. The pipette docking assembly includes a pipette station, a pipette station guard, and a reservoir.
Abstract:
An electroporation system including one or more of a pipette, a pipette tip, a pipette docking assembly, and a pulse generator. The pipette docking assembly includes a pipette station, a pipette station guard, and a reservoir (e.g., a buffer tube). A method for transfecting a cell with a payload including providing an electroporation system, providing the cell, providing the payload, introducing the cell and the payload into a pipette tip, and electroporating the cell within the pipette tip by operating the electroporation system.
Abstract:
In one aspect, a thermal cycler system including a sample block and a thermoelectric device is disclosed. In various embodiments, the sample block has a first surface configured to receive a plurality of reaction vessels and an opposing second surface. In various embodiments the thermoelectric device is operably coupled to the second surface of the sample block. In various embodiments a thermal control unit is provided. In various embodiments the thermal control unit includes a computer processing unit. In various embodiments the thermal control unit includes an electrical current source. In various embodiments the thermal control unit also includes an electrical interface portion configured to connect the thermoelectric device with the electrical current source by way of an electrical cable. In various embodiments the thermal control unit is oriented in a different plane than the sample block and thermoelectric cooler.