摘要:
A carrier for use in processing of a plurality of wafers or other substrates includes a support frame on which the wafers are mounted and in one embodiment at least one auxiliary frame for holding the substrates on the support frame. A plurality of clips extend from the auxiliary frame and engage the substrates in pressure engagement, and fasteners retain the auxiliary frame in position with respect to the support frame. In one embodiment two auxiliary frames can be employed for holding wafers on opposing surfaces of the support frame. The support frame has electrically non-conducting surfaces whereby the processing does not affect the support frame, and the auxiliary frame is made of electrically non-conductive material. The clips are electrically conductive and bridge current from the support frame to the wafers during plating operations. In another embodiment, auxiliary frame are not used and the wafer retention clips are mounted on the support frame. In use, the carrier can support a high number of units for processing with no significant mechanical stress being transferred to the wafers during loading and unloading from the carrier. The carriers and wafers can be transferred easily for different chemical baths and can be handled safely during rinsing and drying steps.
摘要:
A carrier for use in processing of a plurality of wafers or other substrates includes a support frame on which the wafers are mounted and in one embodiment at least one auxiliary frame for holding the substrates on the support frame. A plurality of clips extend from the auxiliary frame and engage the substrates in pressure engagement, and fasteners retain the auxiliary frame in position with respect to the support frame. In one embodiment two auxiliary frames can be employed for holding wafers on opposing surfaces of the support frame. The support frame has electrically non-conducting surfaces whereby the processing does not affect the support frame, and the auxiliary frame is made of electrically non- conductive material. The clips are electrically conductive and bridge current from the support frame to the wafers during plating operations. In another embodiment, auxiliary frame are not used and the wafer retention clips are mounted on the support frame. In use, the carrier can support a high number of units for processing with no significant mechanical stress being transferred to the wafers during loading and unloading from the carrier. The carriers and wafers can be transferred easily for different chemical baths and can be handled safely during rinsing and drying steps.
摘要:
In one embodiment, a solar cell is fabricated using an ink pattern as a mask for a processing step. The ink pattern may comprise an ink that is substantially devoid of particles that may scratch a surface on which the ink pattern is formed. The ink pattern may be formed by screen printing. In one embodiment, the ink pattern is formed on an oxide layer and comprises an ink that is substantially free of silicon dioxide particles. The ink pattern may be employed as an etching or deposition mask, for example.
摘要:
A non-contact edge coating apparatus includes an applicator for applying a coating material on an edge of a solar cell substrate and a control system configured to drive the applicator. The control system may drive the applicator along an axis to maintain a distance with an edge of the substrate as the substrate is rotated to have the edge coated with a coating material. The applicator may include a recessed portion into which the edge of the substrate is received for edge coating. For example, the applicator may be a roller with a groove. Coating material may be introduced into the groove for application onto the edge of the substrate. A variety of coating materials may be employed with the apparatus including hot melt ink and UV curable plating resist.
摘要:
A non-contact edge coating apparatus includes an applicator for applying a coating material on an edge of a solar cell substrate and a control system configured to drive the applicator. The control system may drive the applicator along an axis to maintain a distance with an edge of the substrate as the substrate is rotated to have the edge coated with a coating material. The applicator may include a recessed portion into which the edge of the substrate is received for edge coating. For example, the applicator may be a roller with a groove. Coating material may be introduced into the groove for application onto the edge of the substrate. A variety of coating materials may be employed with the apparatus including hot melt ink and UV curable plating resist.
摘要:
A non-contact edge coating apparatus applies coating material to an edge of a non-circular solar cell substrate without physical contact. The apparatus may include a rotatable substrate support configured to hold the substrate. The apparatus may further include an applicator configured to receive a coating material and apply the coating material to an edge of the substrate while the substrate is rotated without any portion of the applicator physically touching the edge of the substrate. The substrate support may be mechanically coupled to a cam, which contacts a follower mechanically coupled to the applicator. A variety of coating materials may be employed with the apparatus including hot melt ink and UV curable plating resist.
摘要:
A non-contact edge coating apparatus applies coating material to an edge of a non-circular solar cell substrate without physical contact. The apparatus may include a rotatable substrate support configured to hold the substrate. The apparatus may further include an applicator configured to receive a coating material and apply the coating material to an edge of the substrate while the substrate is rotated without any portion of the applicator physically touching the edge of the substrate. The substrate support may be mechanically coupled to a cam, which contacts a follower mechanically coupled to the applicator. A variety of coating materials may be employed with the apparatus including hot melt ink and UV curable plating resist.
摘要:
One embodiment relates to a dopant material for manufacturing solar cells. The dopant material includes a primary carrier and a dopant system. The primary carrier is a solid at a lower temperature, a liquid at an elevated temperature, and decomposes at a third temperature higher than the elevated temperature. The dopant material is dispensible in a controlled manner at the elevated temperature to a defined area of a silicon substrate at the lower temperature. The dopant system includes a dopant carrier and dopant source. The dopant source is stable at the third temperature. Other embodiments, aspects and features are also disclosed.