摘要:
The present invention provides a low cost device that has a true die to external fiber optic connection. Specifically, the present invention relates to an optical device package joined to a semiconductor device package. In some cases, the combination is joined using wirebond studs and an adhesive material. In other cases, the combination is joined using an anisotropic conductive film. Yet, in other cases, the combination is joined using solder material. Each of these joining mechanisms provides high levels of thermal, electrical and optical performance. The joining mechanisms can apply to optical sub-assembly and chip sub-assembly interfaces in transceivers, transmitters, as well as receivers for opto-electronic packages.
摘要:
Electro-optical packages that embed the electronics of the packages directly to the optical cabling, provide short electrical connection paths for high performance, and that provide a robust interconnects. A first electro-optical package includes an integrated circuit and a connector sleeve configured to receive a plug-in optical assembly from the underside of the PC board. The plug-in optical assembly includes a backing piece and an opto-electric device mounted onto the backing piece. An electrical connection is provided between the opto-electric device and a contact location on the backing piece and a contact is provided between the contact location on the backing piece and the integrated circuit. With a second electro-optical package, an integrated circuit having an active surface facing in a first direction and an opto-electric device having contact points facing a second direction are provided. The integrated circuit and the opto-electric are positioned with respect to one another such that a direct electrical connection can be formed between the active surface of the integrated circuit and the contact points of the opto-electrical device.
摘要:
The present invention provides a technique for manufacturing a low cost device that provides a true die to external fiber optic connection. Specifically, the present invention relates to several techniques for joining an optical device package to a semiconductor device package. The first technique involves using wirebond studs and an adhesive material, the second technique involves the use of an anisotropic conductive film, and the third technique involves the use of solder material. Each of these techniques provides high levels of thermal, electrical and optical performance. The methods apply to optical sub-assembly and chip sub-assembly interfaces in transceivers, transmitters, as well as receivers for opto-electronic packages.
摘要:
Concepts for conveniently arranging devices for the transduction of signals to and from voltage and current domains to infrared radiation domains is described. Specifically, optoelectronic components and methods of making the same are described. In one aspect, the optoelectronic component includes a base substrate having a pair of angled (or substantially perpendicular) faces with electrical traces extending therebetween. A semiconductor chip assembly is mounted on the first face of the base substrate and a photonic device is mounted on the second face. Both the semiconductor chip assembly and the photonic device are electrically connected to traces on the base substrate. The semiconductor chip assembly is generally arranged to be electrically connected to external devices. The photonic devices are generally arranged to optically communicate with one or more optical fibers. The described structure may be used with a wide variety of photonic devices. In some embodiments the base substrate is formed from a ceramic material having the electrical traces formed thereon. In other implementations the substrate includes a backing block having a flexible printed circuit substrate adhered thereto.
摘要:
The present invention provides a low cost device that has a true die to external fiber optic connection. Specifically, the present invention relates to an optical device package joined to a semiconductor device package. In some cases, the combination is joined using wirebond studs and an adhesive material. In other cases, the combination is joined using an anisotropic conductive film. Yet, in other cases, the combination is joined using solder material. Each of these joining mechanisms provides high levels of thermal, electrical and optical performance. The joining mechanisms can apply to optical sub-assembly and chip sub-assembly interfaces in transceivers, transmitters, as well as receivers for opto-electronic packages.
摘要:
Concepts for conveniently arranging devices for the transduction of signals to and from voltage and current domains to infrared radiation domains is described. Specifically, optoelectronic components and methods of making the same are described. In one aspect, the optoelectronic component includes a base substrate having a pair of angled (or substantially perpendicular) faces with electrical traces extending therebetween. A semiconductor chip assembly is mounted on the first face of the base substrate and a photonic device is mounted on the second face. Both the semiconductor chip assembly and the photonic device are electrically connected to traces on the base substrate. The semiconductor chip assembly is generally arranged to be electrically connected to external devices. The photonic devices are generally arranged to optically communicate with one or more optical fibers. The described structure may be used with a wide variety of photonic devices. In some embodiments the base substrate is formed from a ceramic material having the electrical traces formed thereon. In other implementations the substrate includes a backing block having a flexible printed circuit substrate adhered thereto.
摘要:
The present invention provides a low cost device that has a true die to external fiber optic connection. Specifically, the present invention relates to an optical device package joined to a semiconductor device package. In some cases, the combination is joined using wirebond studs and an adhesive material. In other cases, the combination is joined using an anisotropic conductive film. Yet, in other cases, the combination is joined using solder material. Each of these joining mechanisms provides high levels of thermal, electrical and optical performance. The joining mechanisms can apply to optical sub-assembly and chip sub-assembly interfaces in transceivers, transmitters, as well as receivers for opto-electronic packages.
摘要:
The present invention provides a technique for manufacturing a low cost device that provides a true die to external fiber optic connection. Specifically, the present invention relates to several techniques for joining an optical device package to a semiconductor device package. The first technique involves using wirebond studs and an adhesive material, the second technique involves the use of an anisotropic conductive film, and the third technique involves the use of solder material. Each of these techniques provides high levels of thermal, electrical and optical performance. The methods apply to optical sub-assembly and chip sub-assembly interfaces in transceivers, transmitters, as well as receivers for opto-electronic packages.
摘要:
The present invention provides a technique for manufacturing a low cost device that provides a true die to external fiber optic connection. Specifically, the present invention relates to several techniques for joining an optical device package to a semiconductor device package. The first technique involves using wirebond studs and an adhesive material, the second technique involves the use of an anisotropic conductive film, and the third technique involves the use of solder material. Each of these techniques provides high levels of thermal, electrical and optical performance. The methods apply to optical sub-assembly and chip sub-assembly interfaces in transceivers, transmitters, as well as receivers for opto-electronic packages.
摘要:
An optoelectronic component is described that includes a photonic device carried by a substrate. A support structure having a relatively higher portion and a relatively lower portion is formed on or attached to the substrate. In a preferred embodiment, the support structure is a dam structure formed by dispensing a flowable material onto the substrate and hardening the dispensed material. The optoelectronic component further includes one or more optical fibers, with each optical fiber being in optical communication with an active facet on the photonic device. The relatively higher and lower portions of the support structure are arranged to position the optical fiber(s) at a desired standoff distance from the photonic device and to slightly incline the distal tip of each optical fiber relative to the top surface of the photonic device. The described packaging approach can be used in both single fiber and multi-channel devices. In some specific embodiments, the support structure is arranged to engage a fiber termination that holds the optical fiber(s). An optically clear cap may also be provided to cover the active facet of the photonic device. In embodiments where the support structure surrounds the photonic device, the support structure may be used as a containment for the cap. With this arrangement, a flowable clear topping material is dispensed over the photonic device without requiring a traditional molding operation.