Abstract:
A semiconductor device is provided having reduced corner thinning in a shallow trench isolation (STI) structure of the periphery region. The semiconductor device may be substantially free of any corner thinning at a corner of a STI structure of the periphery region. Methods of manufacturing such a semiconductor device are also provided.
Abstract:
A method of fabricating a semiconductor device is provided. A stack layer is formed on a substrate. The stack layer is patterned to form a plurality of stack structures extending in a first direction. A trench extending in the first direction is located between two adjacent stack structures. Each trench has a plurality of wide portions and a plurality of narrow portions. A maximum width of the wide portions in a second direction is larger than a maximum width of the narrow portions in the second direction. A charge storage layer is formed to cover a bottom surface and sidewalls of the wide portion and fill up the narrow portion. A conductive layer is formed to fill up the wide portion. A semiconductor device formed by the method is also provided.
Abstract:
A method of fabricating a semiconductor device is provided. A stack layer is formed on a substrate. The stack layer is patterned to form a plurality of stack structures extending in a first direction. A trench extending in the first direction is located between two adjacent stack structures. Each trench has a plurality of wide portions and a plurality of narrow portions. A maximum width of the wide portions in a second direction is larger than a maximum width of the narrow portions in the second direction. A charge storage layer is formed to cover a bottom surface and sidewalls of the wide portion and fill up the narrow portion. A conductive layer is formed to fill up the wide portion. A semiconductor device formed by the method is also provided.
Abstract:
A semiconductor device and a method of forming the same are provided. At least two separated stacked structures and at least two hard mask patterns respectively on the stacked structures are formed on a substrate. A patterned mask layer is formed on the substrate. The patterned mask layer has an opening which exposes a portion of top surfaces of the hard mask patterns and a portion of the substrate between the stacked structures. The exposed portion of the substrate is removed by using the patterned mask layer and the hard mask patterns as a mask, so as to form a trench in the substrate. An ion implantation process is performed by using the patterned mask layer and the hard mask patterns as a mask, so as to form a doped region in the substrate around the trench.
Abstract:
A semiconductor device, a memory device, and a manufacturing method of the same are provided. The memory device includes a substrate, a floating gate, a gate insulation layer, an inter-gate dielectric layer, and a control gate. The control gate is a multi-layer structure with three or more layers, and at least one layer of the multi-layer structure is a metal silicide layer.
Abstract:
A pad structure including a plurality of staircase structures is provided. The staircase structures are disposed on the substrate. Each of the staircase structures includes a plurality of conductor layers and a plurality of dielectric layers that are alternately stacked. Two adjacent staircase structures are connected with each other by sharing the conductor layers and the dielectric layers and are arranged in parallel along a first direction. One of the two adjacent staircase structures includes at least one staircase portion that gradually decreases in height along a second direction, and the other of the two adjacent staircase structures includes at least one staircase portion that gradually decreases in height along a direction opposite to the second direction.