Abstract:
An electronic device includes an application processor and a sensor hub, where the application processor is arranged for executing applications running on a system of the electronic device, and the sensor hub is arranged for obtaining and processing sensed data from a plurality of sensors within the electronic device. In addition, the application processor further downloads location data from a remote device via a network module, and at least a portion of the downloaded location data is further stored in a storage unit of the sensor hub to be reused for positioning.
Abstract:
An electronic device includes an application processor and a sensor hub, where the application processor is arranged for executing applications running on a system of the electronic device, and the sensor hub is arranged for obtaining and processing sensed data from a plurality of sensors within the electronic device. In addition, the application processor further downloads location data from a remote device via a network module, and at least a portion of the downloaded location data is further stored in a storage unit of the sensor hub to be reused for positioning.
Abstract:
A multi-cluster system having processor cores of different energy efficiency characteristics is configured to operate with high efficiency such that performance and power requirements can be satisfied. The system includes multiple processor cores in a hierarchy of groups. The hierarchy of groups includes: multiple level-1 groups, each level-1 group including one or more of processor cores having identical energy efficiency characteristics, and each level-1 group configured to be assigned tasks by a level-1 scheduler; one or more level-2 groups, each level-2 group including respective level-1 groups, the processor cores in different level-1 groups of the same level-2 group having different energy efficiency characteristics, and each level-2 group configured to be assigned tasks by a respective level-2 scheduler; and a level-3 group including the one or more level-2 groups and configured to be assigned tasks by a level-3 scheduler.
Abstract:
An electronic system (300) comprising: a battery (303); at least one electronic device; and a power managing unit (301), arranged for detecting a battery voltage of the battery (303), and arranged for limiting at least one performance of the at least one electronic device if the battery voltage is not higher than a first low threshold voltage.
Abstract:
Disclosed is a power managing method applied to an electronic system comprising a power providing device. The power managing method comprises: (a) receiving a power reference parameter provided by a user; and (b) displaying a candidate disabling list, which lists at least one application program, according to the power reference parameter and an available power budget of the power providing device. At least one of the application programs listed in the candidate disabling list can be selected and disabled.
Abstract:
A method and a computer-readable medium for dynamically managing power of a multi-core processor of a computing system are provided. The multi-core processor generates a dynamic voltage and frequency scaling (DVFS) table, determines a first index by alternatively selecting either a power budget or a required performance thereof, determines a current thread level parallelism (TLP) of the computing system, selects one of entries according to the current TLP and the first index, and configure first cores and second cores thereof according to a first settings and a second settings of the selected entry.
Abstract:
An electronic system (300) comprising: a battery (303); at least one electronic device; and a power managing unit (301), arranged for detecting a battery voltage of the battery (303), and arranged for limiting at least one performance of the at least one electronic device if the battery voltage is not higher than a first low threshold voltage.
Abstract:
Method and apparatus are provided for thermal management of mobile devices. In one novel aspect, a throttle method is used to control the fast rising temperature for the device. In one embodiment, the thermal management method determines a temperature of the mobile device and compares the temperature with a plurality of predefined temperature thresholds. The thermal management applies a first throttle solution upon detecting the temperature reaches a first predefined temperature threshold and applies a second throttle solution upon detecting the temperature reaches a second predefined temperature threshold. In one embodiment, the first and the second throttle solutions control the slope of the rising temperature to be below a first predefined slope and a second predefined slope, respectively. In one embodiment, the temperature is controlled by adjusting the operating frequency and/or voltage of at least one heat-generating component of the mobile device.
Abstract:
Method and apparatus are provided for thermal management of mobile devices. In one novel aspect, a micro-throttle method is used to control the fast rising temperature for the device. In one embodiment, the thermal management method determines a temperature of the mobile device and compares the temperature with a plurality of predefined temperature thresholds. The thermal management applies a first micro-throttle solution upon detecting the temperature reaches a first predefined temperature threshold and applies a second micro-throttle solution upon detecting the temperature reaches a second predefined temperature threshold. In one embodiment, the first and the second micro-throttle solution control the slope of the rising temperature to be below a first predefined slope and a second predefined slope, respectively. In one embodiment, the temperature is controlled by adjusting the operating frequency or voltage of at least one heat-generating component of the mobile device.
Abstract:
A method of dynamic random access memory (DRAM) resource control for a DRAM manager of an electronic device is disclosed. The method comprises receiving at least one respective request message from at least one DARM user of the electronic device, each request message indicating required power information requested by the DRAM user sending the request message, and determining the DRAM to operate in one of a plurality of predetermined DRAM resource statuses respectively corresponding to a plurality of power levels according to the required power information respectively indicated by the at least one request message.