Abstract:
The present invention provides a thermal control system and a thermal control method for an electronic device. The thermal control system comprises: an integrated circuit, a determining unit, an adding unit, and a proportional-integral-derivative (PID) controlling unit. The determining unit is utilized for determining at least a target thermal parameter for the integrated circuit. The adding unit is coupled to the integrated circuit and the determining unit, and utilized for receiving the target thermal parameter and at least an actual thermal parameter of the integrated circuit to generate at least an error thermal parameter accordingly. The PID controlling unit is coupled to the adding unit and the integrated circuit, and utilized for generating at least a performance level for the integrated circuit according to the error thermal parameter.
Abstract:
A portable device is provided. A first processor performs an initial procedure according to an operation clock with a first frequency value and an operation voltage with a first voltage value, and performs a calibration procedure according to the operation clock with a second frequency value and the operation voltage with a second voltage value when the initial procedure has been performed and a self-calibration event is present. A second processor detects whether a specific function of the calibration procedure is being performed by the first processor. The second processor stores the second frequency value and the second voltage value into a storage unit after the calibration procedure is performed. The second voltage value is lower than the first voltage value, and the second frequency value is lower than the first frequency value.
Abstract:
The present invention provides a thermal control system and a thermal control method for an electronic device. The thermal control system comprises: an integrated circuit, a determining unit, an adding unit, and a proportional-integral-derivative (PID) controlling unit. The determining unit is utilized for determining at least a target thermal parameter for the integrated circuit. The adding unit is coupled to the integrated circuit and the determining unit, and utilized for receiving the target thermal parameter and at least an actual thermal parameter of the integrated circuit to generate at least an error thermal parameter accordingly. The PID controlling unit is coupled to the adding unit and the integrated circuit, and utilized for generating at least a performance level for the integrated circuit according to the error thermal parameter.
Abstract:
A processing device performs dual-rail power equalization for its memory cell array and logic circuitry. The memory cell array is coupled to a first power rail through a first switch to receive a first voltage level. The logic circuitry is coupled to a second power rail through a second switch to receive a second voltage level that is different from the first voltage level. The processing device also includes a power switch coupled to at least the second power rail and operative to be enabled to equalize voltage supplied to the memory cell array and the logic circuitry.
Abstract:
A processing device performs dual-rail power equalization for its memory cell array and logic circuitry. The memory cell array is coupled to a first power rail through a first switch to receive a first voltage level. The logic circuitry is coupled to a second power rail through a second switch to receive a second voltage level that is different from the first voltage level. The processing device also includes a power switch coupled to at least the second power rail and operative to be enabled to equalize voltage supplied to the memory cell array and the logic circuitry.
Abstract:
A controlling method for optimizing a processor is provided. The controlling method includes determining an actual utilization state of the processor in a first period, and adjusting performance and/or power of the processor in a second period by a PID (Proportional Integral Derivative) governor based on the actual utilization state in the first period. The second period is after the first period.
Abstract:
Method and apparatus are provided for thermal management of mobile devices. In one novel aspect, a throttle method is used to control the fast rising temperature for the device. In one embodiment, the thermal management method determines a temperature of the mobile device and compares the temperature with a plurality of predefined temperature thresholds. The thermal management applies a first throttle solution upon detecting the temperature reaches a first predefined temperature threshold and applies a second throttle solution upon detecting the temperature reaches a second predefined temperature threshold. In one embodiment, the first and the second throttle solutions control the slope of the rising temperature to be below a first predefined slope and a second predefined slope, respectively. In one embodiment, the temperature is controlled by adjusting the operating frequency and/or voltage of at least one heat-generating component of the mobile device.
Abstract:
Method and apparatus are provided for thermal management of mobile devices. In one novel aspect, a micro-throttle method is used to control the fast rising temperature for the device. In one embodiment, the thermal management method determines a temperature of the mobile device and compares the temperature with a plurality of predefined temperature thresholds. The thermal management applies a first micro-throttle solution upon detecting the temperature reaches a first predefined temperature threshold and applies a second micro-throttle solution upon detecting the temperature reaches a second predefined temperature threshold. In one embodiment, the first and the second micro-throttle solution control the slope of the rising temperature to be below a first predefined slope and a second predefined slope, respectively. In one embodiment, the temperature is controlled by adjusting the operating frequency or voltage of at least one heat-generating component of the mobile device.
Abstract:
Method and apparatus are provided for thermal management of mobile devices. In one novel aspect, a micro-throttle method is used to control the fast rising temperature for the device. In one embodiment, the thermal management method determines a temperature of the mobile device and compares the temperature with a plurality of predefined temperature thresholds. The thermal management applies a first micro-throttle solution upon detecting the temperature reaches a first predefined temperature threshold and applies a second micro-throttle solution upon detecting the temperature reaches a second predefined temperature threshold. In one embodiment, the first and the second micro-throttle solution control the slope of the rising temperature to be below a first predefined slope and a second predefined slope, respectively. In one embodiment, the temperature is controlled by adjusting the operating frequency or voltage of at least one heat-generating components of the mobile device.