Abstract:
A multi-channel memory system has a memory device, a plurality of channels, and a control circuit. The memory device has a plurality of memory storage spaces. The channels are coupled to the memory storage spaces, respectively, wherein each of the channels is configured to act as a memory interface for accessing a corresponding memory storage space independently. The control circuit controls clock frequencies of clocks on the channels, respectively. At a same time point, the channels include at least a first channel operating at a first clock frequency set by the control circuit and a second channel operating at a second clock frequency set by the control circuit at a same time point, and the second clock frequency is different from the first clock frequency.
Abstract:
An electronic device has a processing system and a management circuit. The processing system executes an application. The management circuit detects an operating behavior of the application during execution of the application, analyzes the detected operating behavior of the application to generate an application identification result, and configures an application-dependent task according to at least the application identification result.
Abstract:
A method and a computer-readable medium for dynamically managing power of a multi-core processor of a computing system are provided. The multi-core processor generates a dynamic voltage and frequency scaling (DVFS) table, determines a first index by alternatively selecting either a power budget or a required performance thereof, determines a current thread level parallelism (TLP) of the computing system, selects one of entries according to the current TLP and the first index, and configure first cores and second cores thereof according to a first settings and a second settings of the selected entry.
Abstract:
A computing system includes a multi-core processor and a core controller. The core controller is for: monitoring utilization of the multi-core processor; calculating a target performance index according to the utilization of the multi-core processor, a target utilization and a first performance index, wherein the first performance index is associated with a first entry of a dynamic voltage frequency scaling (DVFS) table that corresponds to a current setting for the multi-core processor; and selecting a second entry of the DVFS table that corresponds to a target-setting according to the target performance index and a second performance index that is associated with the second entry. The target-setting is used to configure the multi-core processor.
Abstract:
A multi-channel memory system has a memory device, a plurality of channels, and a control circuit. The memory device has a plurality of memory storage spaces. The channels are coupled to the memory storage spaces, respectively, wherein each of the channels is configured to act as a memory interface for accessing a corresponding memory storage space independently. The control circuit controls clock frequencies of clocks on the channels, respectively. At a same time point, the channels include at least a first channel operating at a first clock frequency set by the control circuit and a second channel operating at a second clock frequency set by the control circuit at a same time point, and the second clock frequency is different from the first clock frequency.
Abstract:
An electronic device has a processing system and a management circuit. The processing system executes an application. The management circuit detects an operating behavior of the application during execution of the application, analyzes the detected operating behavior of the application to generate an application identification result, and configures an application-dependent task according to at least the application identification result.
Abstract:
A controller coupled to a plurality of hardware modules is arranged for determining activities of at least two of the hardware modules in real time, and determining a voltage and a frequency for one of the hardware modules according to the activities of the at least two of the hardware modules.
Abstract:
A method and a computer-readable medium for dynamically managing power of a multi-core processor of a computing system are provided. The multi-core processor generates a dynamic voltage and frequency scaling (DVFS) table, determines a first index by alternatively selecting either a power budget or a required performance thereof, determines a current thread level parallelism (TLP) of the computing system, selects one of entries according to the current TLP and the first index, and configure first cores and second cores thereof according to a first settings and a second settings of the selected entry.
Abstract:
Methods and apparatus are provided for adaptive thermal slope control for dynamic thermal management. In one novel aspect, the device monitors and obtains sampling temperatures, calculates a thermal-slope index, determines whether the calculated thermal-slope index is greater than a predefined slope threshold, adjusts a power budget based on a thermal-slope algorithm, and applies the dynamic thermal management (DTM) adaptively based on the adjusted power budget. In one embodiment, fixed slope algorithm is used. The power budget is adjusted such that an adjusted slope of temperatures stays at a constant. In another embodiment, the time prediction algorithm is used. The power budget is adjusted such that a predicted time to reach a predefined thermal threshold stays a constant. In one embodiment, the time-prediction algorithm is a time-to-target-point (T2TP) algorithm. The T2TP is obtained using a linear equation or a LOG equation.
Abstract:
A critical path emulating apparatus includes a critical path emulator (CPE) and an interconnection circuit. The CPE is capable of emulating a critical path of a target device, and supporting a plurality of speed information detection modes. The interconnection circuit is capable of supporting a plurality of interconnection arrangements, wherein when the interconnection circuit is configured to have a first interconnection arrangement, the CPE is capable of being used in a first speed information detection mode, and when the interconnection circuit is configured to have a second interconnection arrangement, the CPE is capable of being used in a second speed information detection mode.