Abstract:
A controlling method for optimizing a processor is provided. The controlling method includes determining an actual utilization state of the processor in a first period, and adjusting performance and/or power of the processor in a second period by a PID (Proportional Integral Derivative) governor based on the actual utilization state in the first period. The second period is after the first period.
Abstract:
Methods and apparatus are provided for adaptive optimization of low-power strategies. In one novel aspect, the device monitors one or more thermal-performance parameters and determines a plurality of operation scenarios for a plurality of corresponding low-power policies. Based on corresponding operation scenarios, the device selects corresponding low-power policy. The device applies different low-power strategy for temperature control based on low-power policies. Different low-power policy is applied to different low-power techniques, such as the DVFS, the CPU hot-plug, and the task migration. In another novel aspect, the device obtains one or more user-defined policy for each corresponding low-power technique. The selection of each low-power policy is further based on its corresponding user-defined policy. In one embodiment, the user-defined DVFS policy includes power policy, performance policy, and DVFS-balanced policy. The user-defined CPU hot-plug policy includes conservative policy, aggressive policy, and hot-plug-balanced policy. The user-defined task-migration policy includes performance policy, and task-migration-balanced policy.
Abstract:
The present invention provides a thermal control system and a thermal control method for an electronic device. The thermal control system comprises: an integrated circuit, a determining unit, an adding unit, and a proportional-integral-derivative (PID) controlling unit. The determining unit is utilized for determining at least a target thermal parameter for the integrated circuit. The adding unit is coupled to the integrated circuit and the determining unit, and utilized for receiving the target thermal parameter and at least an actual thermal parameter of the integrated circuit to generate at least an error thermal parameter accordingly. The PID controlling unit is coupled to the adding unit and the integrated circuit, and utilized for generating at least a performance level for the integrated circuit according to the error thermal parameter.
Abstract:
Methods and apparatus are provided for adaptive optimization of low-power strategies. In one novel aspect, the device monitors one or more thermal-performance parameters and determines a plurality of operation scenarios for a plurality of corresponding low-power policies. Based on corresponding operation scenarios, the device selects corresponding low-power policy. The device applies different low-power strategy for temperature control based on low-power policies. Different low-power policy is applied to different low-power techniques, such as the DVFS, the CPU hot-plug, and the task migration. In another novel aspect, the device obtains one or more user-defined policy for each corresponding low-power technique. The selection of each low-power policy is further based on its corresponding user-defined policy. In one embodiment, the user-defined DVFS policy includes power policy, performance policy, and DVFS-balanced policy. The user-defined CPU hot-plug policy includes conservative policy, aggressive policy, and hot-plug-balanced policy. The user-defined task-migration policy includes performance policy, and task-migration-balanced policy.
Abstract:
A controller coupled to a plurality of hardware modules is arranged for determining activities of at least two of the hardware modules in real time, and determining a voltage and a frequency for one of the hardware modules according to the activities of the at least two of the hardware modules.
Abstract:
The present invention provides a thermal control system and a thermal control method for an electronic device. The thermal control system comprises: an integrated circuit, a determining unit, an adding unit, and a proportional-integral-derivative (PID) controlling unit. The determining unit is utilized for determining at least a target thermal parameter for the integrated circuit. The adding unit is coupled to the integrated circuit and the determining unit, and utilized for receiving the target thermal parameter and at least an actual thermal parameter of the integrated circuit to generate at least an error thermal parameter accordingly. The PID controlling unit is coupled to the adding unit and the integrated circuit, and utilized for generating at least a performance level for the integrated circuit according to the error thermal parameter.