Abstract:
High quality epitaxial layers of monocrystalline materials can be grown overlying monocrystalline substrates such as large silicon wafers by forming a compliant substrate for growing the monocrystalline layers. An accommodating buffer layer comprises a layer of monocrystalline oxide spaced apart from a silicon wafer by an amorphous interface layer of silicon oxide. The amorphous interface layer dissipates strain and permits the growth of a high quality monocrystalline oxide accommodating buffer layer. The accommodating buffer layer is lattice matched to both the underlying silicon wafer and the overlying monocrystalline material layer. Any lattice mismatch between the accommodating buffer layer and the underlying silicon substrate is taken care of by the amorphous interface layer. In addition, formation of a compliant substrate may include utilizing surfactant enhanced epitaxy, epitaxial growth of single crystal silicon onto single crystal oxide, and epitaxial growth of Zintl phase materials. Using such a compliant substrate, electro-optic structures and devices may be formed, and, in particular, cantilevered optic structures may be formed.
Abstract:
A structure for an optical switch includes a reflective layer formed over a high quality epitaxial layer of piezoelectric compound semiconductor materials grown over a monocrystalline substrate, such as a silicon wafer. The piezoelectric layer can be activated to alter the path of light incident on the reflective layer. A compliant substrate is provided for growing the monocrystalline compound semiconductor layer. An accommodating buffer layer comprises a layer of monocrystalline oxide spaced apart from a silicon wafer by an amorphous interface layer of silicon oxide. The amorphous interface layer dissipates strain and permits the growth of a high quality monocrystalline oxide accommodating buffer layer. The accommodating buffer layer is lattice matched to both the underlying silicon wafer and the overlying piezoelectric monocrystalline material layer.
Abstract:
A meso-scale MEMS device having a cantilevered beam is formed using standard printed wiring board and high density interconnect technologies and practices. The beam includes at least some polymer material to constitute its length, and in some embodiments also comprises a conductive material as a load-bearing component thereof. In varying embodiments, the beam is attached at a location proximal to an end thereof, or distal to an end thereof.
Abstract:
A opto-electronic semiconductor structure having an electrochromic switch includes a monocrystalline silicon substrate and an amorphous oxide material overlying the monocrystalline silicon substrate. A monocrystalline perovskite oxide material overlies the amorphous oxide material and a monocrystalline compound semiconductor material overlies the monocrystalline perovskite oxide material. An optical source component that is adapted to transmit radiant energy may be formed within the monocrystalline compound semiconductor material. An electrochromic switch may be optically coupled to the optical source component. An optical detector component that is adapted to receive radiant energy may be formed within the monocrystalline compound semiconductor material. An electrochromic switch may be optically coupled to the optical detector component.