摘要:
A system to improve operation of a data center with heterogeneous computing clouds may include monitoring components to track data center climate controls and individual heterogeneous computing clouds' operating parameters within the data center. The system may also include a controller that regulates the individual heterogeneous computing clouds and data center climate controls based upon data generated by the monitoring components to improve the operating performance of the individual heterogeneous computing clouds as well as the operating performance of the data center. The system may further include spilling computing clouds to receive excess workload of an individual heterogeneous computing cloud without violating individual heterogeneous computing clouds contracts.
摘要:
A system to improve operation of a data center with heterogeneous computing clouds may include monitoring components to track data center climate controls and individual heterogeneous computing clouds' operating parameters within the data center. The system may also include a controller that regulates the individual heterogeneous computing clouds and data center climate controls based upon data generated by the monitoring components to improve the operating performance of the individual heterogeneous computing clouds as well as the operating performance of the data center. The system may further include spilling computing clouds to receive excess workload of an individual heterogeneous computing cloud without violating individual heterogeneous computing clouds contracts.
摘要:
Awareness of the relationships among the operating parameters for an individual core and among cores allows dynamic and intelligent management of the multi-core system. The relationships among operating parameters and cores, which can be somewhat opaque, are established with design-time simulations, and adapted with run time data collected from operation of the multi-core system. The relationships are expressed with functions that translate between operating parameters, between different cores, and between operating parameters of different cores. These functions are embodied in circuitry built into the multi-core system. The circuitry will be referred to hereinafter as a translator unit. The translator unit traverses the complex relational dependencies among multiple operating parameters and multiple cores, and determines an outcome with respect to one or more constraints corresponding to those operating parameters and cores.
摘要:
A method is provided for managing power distribution on a three-dimensional chip stack having two or more strata, a plurality of vertical power delivery structures, and multiple stack components. At least two stack components are on different strata. Operating modes are stored that respectively have different power dissipations. A respective effective power budget is determined for each of the at least two stack components based on respective ones of the operating modes targeted therefor, and power characteristics and thermal characteristics of at least some of the stack components inclusive or exclusive of the at least two stack components. The respective ones of the plurality of operating modes targeted for the at least two stack components are selectively accepted or re-allocated based on the respective effective power budget for each of the at least two stack components, power constraints, and thermal constraints. The power constraints include vertical structure electrical constraints.
摘要:
A method and system for an infrastructure for performance-based chip-to-chip stacking are provided in the illustrative embodiments. A critical path monitor circuit (infrastructure) is configured to launch a signal from a launch point in a first layer, the first layer being a first circuit. The infrastructure is further configured to create an electrical path to a capture point. The signal is launched from the launch point in the first layer. A performance characteristic of the electrical path is measured, resulting in a measurement, wherein the measurement is indicative of a performance of the first layer when stacked with a second layer in a 3D stack without actually stacking the first and the second layers in the 3D stack, the second layer being a second circuit.
摘要:
A heterogeneous three-dimensional (3-D) stacked apparatus is provided that includes multiple layers arranged in a stacked configuration with a lower layer configured to receive a board-level voltage and one or more upper layers stacked above the lower layer. The heterogeneous 3-D stacked apparatus also includes multiple tiles per layer, where each tile is designed to receive a separately regulated voltage. The heterogeneous 3-D stacked apparatus additionally includes at least one layer in the one or more upper layers with voltage converters providing the separately regulated voltage converted from the board-level voltage.
摘要:
Block placement within each device-containing layer is optimized under the constraint of a simultaneous optimization of interlayer connectivity between the device-containing layer and immediately adjacent device-containing layers. For each functional block within the device-containing layer, lateral heat flow is calculated to laterally adjacent functional blocks. If the lateral heat flow is less than a threshold value for a pair of adjacent functional blocks, placement of the functional blocks and/or interlayer interconnect structure array therebetween or modification of the interlayer interconnect structure array is performed. This routine is repeated for all adjacent pairs of functional blocks in each of the device-containing layers. Subsequently, block placement within each device-containing layer may be optimized under the constraint of a simultaneous optimization of interlayer connectivity across all device-containing layers. This method provides a design having sufficient lateral heat flow in each of the device-containing layers in a semiconductor chip.
摘要:
Enhanced modularity in heterogeneous three-dimensional computer processing chip stacks includes a method of manufacture. The method includes preparing a host layer and integrating the host layer with at least one other layer in the stack. The host layer is prepared by forming cavities on the host layer for receiving chips pre-configured with heterogeneous properties relative to each other, disposing the chips in corresponding cavities on the host layer, and joining the chips to respective surfaces of the cavities thereby forming an element having a smooth surface with respect to the host layer and the chips.
摘要:
A program product and method of managing task execution on an integrated circuit chip such as a chip-level multiprocessor (CMP) with Simultaneous MultiThreading (SMT). Multiple chip operating units or cores have chip sensors (temperature sensors or counters) for monitoring temperature in units. Task execution is monitored for hot tasks and especially for hotspots. Task execution is balanced, thermally, to minimize hot spots. Thermal balancing may include Simultaneous MultiThreading (SMT) heat balancing, chip-level multiprocessors (CMP) heat balancing, deferring execution of identified hot tasks, migrating identified hot tasks from a current core to a colder core, User-specified Core-hopping, and SMT hardware threading.
摘要:
Enhanced modularity in heterogeneous three-dimensional computer processing chip stacks includes a method of manufacture. The method includes preparing a host layer and integrating the host layer with at least one other layer in the stack. The host layer is prepared by forming cavities on the host layer for receiving chips pre-configured with heterogeneous properties relative to each other, disposing the chips in corresponding cavities on the host layer, and joining the chips to respective surfaces of the cavities thereby forming an element having a smooth surface with respect to the host layer and the chips.