摘要:
In a conventional power MOSFET, an electric field concentration occurs at a gate electrode bottom portion on the outermost periphery of an operating area, thereby causing a deterioration in high voltage strength between the drain and the source, or between the collector and emitter. In this invention, a trench at the outermost periphery of an operating area is shallower than trenches of the operating area. Thereby, the electric field concentration at the gate electrode bottom portion on the outermost periphery of the operating area is relieved, and a deterioration in high voltage strength between the drain and source is suppressed. Furthermore, by narrowing the outermost peripheral trench aperture portion, trenches different in depth can be formed by an identical step.
摘要:
In a conventional power MOSFET, an electric field concentration occurs at a gate electrode bottom portion on the outermost periphery of an operating area, thereby causing a deterioration in high voltage strength between the drain and the source, or between the collector and emitter. In this invention, a trench at the outermost periphery of an operating area is shallower than trenches of the operating area. Thereby, the electric field concentration at the gate electrode bottom portion on the outermost periphery of the operating area is relieved, and a deterioration in high voltage strength between the drain and source is suppressed. Furthermore, by narrowing the outermost peripheral trench aperture portion, trenches different in depth can be formed by an identical step.
摘要:
An interlayer dielectric film is completely buried in a trench, and failures caused by step coverage is prevented because a source electrode can be formed substantially uniformly on an upper portion of a gate electrode. Also, in the processes of forming a source region, a body region and an interlayer dielectric film, only one mask is necessary so that the device size is reduced to account for placement error of only one mask alignment.
摘要:
In a MOSFET, after an element region is formed, a wiring layer is formed subsequently to a barrier metal layer, and hydrogen annealing is performed. However, in the case of an n-channel MOSFET, a threshold voltage is lowered due to an occlusion characteristic of the barrier metal layer. Thus, an increased impurity concentration in a channel layer causes a problem that reduction in an on-resistance is inhibited. According to the present invention, after a barrier metal layer is formed, an opening is provided in the barrier metal layer on an interlayer insulating film, and hydrogen annealing treatment is performed after a wiring layer is formed. Thus, an amount of hydrogen which reaches a substrate is further increased, and lowering of a threshold voltage is suppressed. Moreover, since an impurity concentration in a channel layer can be lowered, an on-resistance is reduced.
摘要:
Conventional power MOSFETs enables prevention of an inversion in a surrounding region surrounding the outer periphery of an element region by a wide annular layer and a wide sealed metal. Since, resultantly, the area of the surrounding region is large, increase in the element region has been restrained. A semiconductor device is hereby provided which has an inversion prevention region containing an MIS (MOS) structure. The width of polysilicon for the inversion prevention region is large enough to prevent an inversion since the area of an oxide film can be increased by the depth of the trench. By this, leakage current can be reduced even though the area of the region surrounding the outer periphery of the element region is not enlarged. In addition, since the element region is enlarged, on-state resistance of the MOSFET can be reduced.
摘要:
In a MOSFET, after an element region is formed, a wiring layer is formed subsequently to a barrier metal layer, and hydrogen annealing is performed. However, in the case of an n-channel MOSFET, a threshold voltage is lowered due to an occlusion characteristic of the barrier metal layer. Thus, an increased impurity concentration in a channel layer causes a problem that reduction in an on-resistance is inhibited. According to the present invention, after a barrier metal layer is formed, an opening is provided in the barrier metal layer on an interlayer insulating film, and hydrogen annealing treatment is performed after a wiring layer is formed. Thus, an amount of hydrogen which reaches a substrate is further increased, and lowering of a threshold voltage is suppressed. Moreover, since an impurity concentration in a channel layer can be lowered, an on-resistance is reduced.
摘要:
An interlayer dielectric film is completely buried in a trench, and failures caused by step coverage is prevented because a source electrode can be formed substantially uniformly on an upper portion of a gate electrode. Also, in the processes of forming a source region, a body region and an interlayer dielectric film, only one mask is necessary so that the device size is reduced to account for placement error of only one mask alignment.
摘要:
Conventional power MOSFETs enables prevention of an inversion in a surrounding region surrounding the outer periphery of an element region by a wide annular layer and a wide sealed metal. Since, resultantly, the area of the surrounding region is large, increase in the element region has been restrained. A semiconductor device is hereby provided which has an inversion prevention region containing an MIS (MOS) structure. The width of polysilicon for the inversion prevention region is large enough to prevent an inversion since the area of an oxide film can be increased by the depth of the trench. By this, leakage current can be reduced even though the area of the region surrounding the outer periphery of the element region is not enlarged. In addition, since the element region is enlarged, on-state resistance of the MOSFET can be reduced.
摘要:
A capacity layer is formed of non-doped polysilicon. Unlike capacity layers formed of an oxide film, generation of seams and the like can be suppressed and thereby a stable capacity layer can be formed. Moreover, polysilicon used as a capacity layer may be doped polysilicon, and an oxide film formed on the surface of the polysilicon also serves as a capacity film. Thus, provision of an insulated gate device featuring low capacity is made possible.
摘要:
In an embodiment of the present invention, after trenches, a gate oxide film and gate electrodes are formed, a channel layer is formed by plural high-acceleration ion implantations where acceleration voltages are different with one another. The channel layer is an impurity implanted layer on which diffusion by a heat treatment is not performed. The channel layer is allowed to have its impurity concentration substantially uniform in a depth-wise direction of the trenches, by implanting ions of the impurity at plural different times by use of a high-acceleration ion implantation system. Since a second region having almost no influence on a characteristic of the channel layer can be reduced, the channel layer having a minimum necessary depth can be obtained. The trenches are thus made shallow, and accordingly a capacitance can be reduced. Furthermore, an on resistance can be made lower by making an epitaxial layer thinner.