摘要:
An enhancement mode RF device and method of fabrication includes a stack of compound semiconductor layers, including a central layer defining a device channel, a doped cap layer, and a buffer epitaxially grown on a substrate. Source and drain implant areas, extending at least into the buffer, are formed to define an implant free area in the device channel between the source and drain. Source and drain metal contacts are positioned on an upper surface of the central layer. Several layers of insulation and dielectric are positioned over the device and a gate opening is formed and filled with gate metal. During epitaxial growth, the doped cap layer is tailored with a thickness and a doping to optimize channel performance including gate-drain breakdown voltage and channel resistance.
摘要:
A method for fabricating an RF enhancement mode FET (30) having improved gate properties is provided. The method comprises the steps of providing (131) a substrate (31) having a stack of semiconductor layers (32-35) formed thereon, the stack including a cap layer (35) and a central layer (33) defining a device channel, forming (103) a photoresist pattern (58) over the cap layer, thereby defining a masked region and an unmasked region, and, in any order, (a) creating (105) an implant region (36, 37) in the unmasked region, and (b) removing (107) the cap layer from the unmasked region. By forming the implant region and cap region with no overlap, a device with low current leakage may be achieved.
摘要:
Methods and apparatus are provided for RF switches (100, 200). In a preferred embodiment, the apparatus comprises one or more multi-gate n-channel enhancement mode FET transistors (50, 112, 114). When used in pairs (112, 114) each has its source (74, 133) coupled to a first common RF I/O port (116) and drains coupled respectively to second and third RF I/O ports (118, 120), and gates (136, 138), coupled respectively to first and second control terminals (122, 124). The multi-gate regions (66, 68) of the FETs (50) are parallel coupled, spaced-apart and serially arranged between source (72) and drain (76). Lightly doped n-regions (Ldd, Lds) are provided serially arranged between the spaced-apart multi-gate regions (66, 68), the lightly doped n-regions (Ldd, Lds) being separated by more heavily doped n-regions (84). Bias resistances (132, 134) are provided between the sources (72, 133) and control terminals (122, 124) so as to provide a DC path between the control terminals (122, 124) that maintains the source (72, 133) voltage at the proper bias potential for enhancement mode operation.
摘要翻译:提供了用于RF开关(100,200)的方法和装置。 在优选实施例中,该装置包括一个或多个多栅极n沟道增强型FET晶体管(50,112,114)。 当成对使用时,每个都具有耦合到第一公共RF I / O端口(116)的源极(74,133)和分别耦合到第二和第三RF I / O端口(118,120)的漏极, 和分别耦合到第一和第二控制端(122,124)的门(136,138)。 FET(50)的多栅极区域(66,68)平行耦合,间隔开并且串联地布置在源极(72)和漏极(76)之间。 轻度掺杂的n区(Ldd,Lds)被串行地布置在间隔开的多栅极区(66,68)之间,轻掺杂的n-区(Ldd,Lds)被更重掺杂的n区分离( 84)。 偏置电阻(132,134)设置在源极(72,133)和控制端子(122,124)之间,以便在维持源极(72,133)和控制端子(122,124)之间提供DC路径, 电压处于适当的偏置电位,用于增强模式操作。
摘要:
Methods and apparatus are provided for RF switches (504, 612) integrated in a monolithic RF transceiver IC (500) and switched gain amplifier (600). Multi-gate n-channel enhancement mode FETs (50, 112, 114, Q1-3, Q4-6) are used with single gate FETs (150), resistors (Rb, Rg, Re, R1-R17) and capacitors (C1-C3) formed by the same manufacturing process. The multiple gates (68) of the FETs (50, 112, 114, Q1-3, Q4-6) are parallel coupled, spaced-apart and serially arranged between source (72) and drain (76). When used in pairs (112, 114) to form a switch (504) for a transceiver (500) each FET has its source (74) coupled to an antenna RF I/O port (116, 501) and drains coupled respectively to second and third RF I/O ports (118, 120; 507, 521) leading to the receiver side (530) or transmitter side (532) of the transceiver (500). The gates (136, 138) are coupled to control ports (122, 124; 503, 505; 606, 608). When used in pairs (Q1-3, Q4-6) to form a variable switched attenuator, the first FET (Q1-3) is a pass device and the second FET (Q4-6) is a shunt device that respectively bridge two series resistors (R1, R2) and block a shunt resistor (R3) of a T-type attenuator.
摘要:
An electronic apparatus includes a semiconductor substrate, a circuit block disposed in and supported by the semiconductor substrate and comprising an inductor, and a discontinuous noise isolation guard ring surrounding the circuit block. The discontinuous noise isolation guard ring includes a metal ring supported by the semiconductor substrate and a ring-shaped region disposed in the semiconductor substrate, having a dopant concentration level, and electrically coupled to the metal ring, to inhibit noise in the semiconductor substrate from reaching the circuit. The metal ring has a first gap and the ring-shaped region has a second gap.
摘要:
An electronic assembly includes a substrate (66), a balun transformer (42) formed on the substrate (66) and including a first winding (50) and a second winding (52), each having respective first and second ends, and a reaction circuit component (48) formed on the substrate (66) and electrically coupled to the second winding (52) between the first and second ends thereof. The balun transformer (42) and the reaction circuit component (48) jointly form a harmonically suppressed balun transformer having a fundamental frequency, and the reaction circuit component (48) is tuned such that the harmonically suppressed balun transformer resonates at a selected harmonic of the fundamental frequency.
摘要:
An integrated circuit includes a p-well block region having a high resistivity due to low doping concentration formed in a region of a substrate for providing noise isolation between a first circuit block and a second circuit block. The integrated circuit further includes a guard region formed surrounding the p-well block region for providing noise isolation between the first circuit block and the second circuit block.
摘要:
In one embodiment of the invention, a semiconductor component includes a semiconductor substrate (110), a first dielectric layer (120) above the semiconductor substrate, a first ohmic contact region (410) and a second ohmic contact region (420) above the semiconductor substrate, a gate electrode (1120) above the semiconductor substrate and between the first ohmic contact region and the second ohmic contact region, a field plate (210) above the first dielectric layer and between the gate electrode and the second ohmic contact region, a second dielectric layer (310) above the field plate, the first dielectric layer, the first ohmic contact region, and the second ohmic contact region, and a third dielectric layer (910) between the gate electrode and the field plate and not located above the gate electrode or the field plate.
摘要:
An integrated circuit includes a p-well block region having a low doping concentration formed in a region of a substrate for providing noise isolation between a first circuit block and a second circuit block. The integrated circuit further includes a guard region and a grounded, highly doped region for providing additional noise isolation.
摘要:
A balanced-unbalanced (balun) signal transformer includes an unbalanced port, a balanced port coupled to the unbalanced port, the balanced port comprising a first terminal and a second terminal, a first capacitor coupled to the first terminal, a first inductor coupled to ground and the first capacitor, a second capacitor coupled to the second terminal, and a second inductor coupled to ground and the second capacitor. The transformer may also include a third capacitor coupled to a terminal of the unbalanced port; and a third inductor coupled to the third capacitor and the third terminal.