Abstract:
A transition detector circuit produces an output pulse upon detection of a transition at any one of several input nodes using a single delay path so all input transitions produce the same output pulse width and with only one gate delay in the circuit. The circuit includes precharging means, coupled between the plurality of transitioning inputs and the output node, for charging the output node high. The precharging means comprises stacked field effect transistor (FET) devices, each having a gate connected to a respective one of the transitioning inputs. A first charging device for charging the output node high is coupled to the output node. A second charging device for discharging the output node low is coupled to the output node. A single delay means, coupled between the plurality of transitioning inputs and both the first and second charging devices, both turns off the first charging device and turns on the second charging device. Switching means, controlled by the plurality of transitioning inputs and coupled between the output node and the second charging device, disconnects the second charging device from the output node.
Abstract:
A mechanism is provided for delivering power to an on-die component (such as a buffer circuit). This may include a package unit having a low frequency delivery path and a high frequency delivery path and a die having the on-die component and a capacitive device each coupled in parallel between a first node and a second node. The die may further include a low frequency reception path and a high frequency reception path. The low frequency reception path may couple to the low frequency delivery path on the package unit and to the first node. The high frequency reception path may couple to the high frequency delivery path on the package unit and to the first node. The high frequency reception path may include a damping resistor.
Abstract:
A circuit includes a capacitor formed with a dielectric including the dielectric encasing elements of the circuit. A detector detects changes in the capacitance of the capacitor.
Abstract:
A method and apparatus for employing a light shield to modulate pixel color responsivity. The improved pixel includes a substrate having a photodiode with a light receiving area. A color filter array material of a first color is disposed above the substrate. The pixel has a first relative responsivity. A light shield is disposed above the substrate to modulate the pixel color responsivity. The light shield forms an aperture whose area is substantially equal to the light receiving area adjusted by a reduction factor. The reduction factor is the result of an arithmetic operation between the first relative responsivity and a second relative responsivity, associated with a second pixel of a second color.
Abstract:
CMOS pixel sensors have been of interest as replacements for CCD's in imaging applications. Such devices promise lower power and simpler system level design through fewer power supply voltages and higher functional integration. It is difficult and cost ineffective to utilize images to test active pixel sensors. Here, a method and apparatus for electrical testing of CMOS pixel sensors is described which involves electrically writing a pattern into the CMOS pixel sensors for the detection of adjacent cell shorts or stuck at faults as well as verification of read-channel circuit functionality and performance. The invention provides for an electrical testing of CMOS pixel array that is simple, time efficient and cost effective for use in, for example, production.
Abstract:
A photodiode is provided. The photodiode includes an insulative region (IR) that permits passage of light therethrough. The photodiode also includes a substrate region of a first conductivity type and a well region of a second conductivity type. The well is formed within the substrate, beneath the IR. The well is demarcated from the substrate by a first surface. The photodiode further includes a heavily doped region (HDR) of the second conductivity type. The HDR is formed within the IR at a first position. The first surface meets the HDR at substantially the first position.
Abstract:
According to one embodiment a computer system is disclosed. The computer system includes a bus and a chipset coupled to the bus. The chipset detects the slew rate of a signal transmitted over the bus by the chipset. In addition the chipset adjusts the slew rate based upon the state of the signal.
Abstract:
A method for controlling a sensor to reduce reset noise is disclosed. The method including the steps of providing a reset command including a RESET signal and a first SAMPLE signal. The method also includes the steps of providing a read command including a first ADDRESS signal, a second SAMPLE signal, and a second ADDRESS signal. An apparatus including a system controller and a sensor controlled by the system controller is also disclosed. In one embodiment, the method and apparatus is provided for a sensor in a sensor array that is read-out in a pipelined fashion.
Abstract:
What is disclosed is an apparatus for reducing row reset noise in photodiode based complementary metal oxide (CMOS) sensors. The apparatus uses at least one reference pixel for each row of pixels in a sensor array. Also, a reset noise elimination unit is provided to adjust the values received from the pixels in a particular row by an adjustment value determined from the reset values received from the reference pixels. Additionally, a method of using the apparatus is disclosed. The method has a step of providing a first reset signal to a row of pixels including the reference pixels. The method also reads out a first set of values from this row after integration. The method continues with providing a second reset signal to the row and a second set of values is read from the row. An adjustment value is calculated from the difference of the values which are read out from the reference pixels.
Abstract:
An image sensor having a well-to-substrate diode as the photodetector. In a preferred embodiment, a modern salicided (CMOS) process is utilized to manufacture the image sensor. The field oxide region above the diode junction is transparent to visible light, thus allowing the photodiode competitive quantum efficiency as compared to devices having source/drain diffusion-to-substrate photodiodes fabricated on a non-salicided process. The photodiode can be integrated as part of a sensor array with digital circuitry using a relatively unmodified digital CMOS process. Furthermore, the structure allows the optical properties of the photodiode to be engineered by modifying the well without deleterious effects, to approximate a first order, on the characteristics of a FET built in another identical well.