摘要:
A semiconductor device having a gate insulating tri-layer includes a substrate, a nitrogen-containing layer disposed on the substrate, a first dielectric layer disposed over the nitrogen containing layer, a second dielectric layer disposed over the first dielectric layer, and a gate electrode disposed over the second dielectric layer. One of the first and second dielectric layers is formed using an oxide having a dielectric constant ranging from 4 to 100 and the other of the first and second dielectric layers is formed using an oxide having a higher dielectric constant ranging from 10 to 10,000.
摘要:
A semiconductor device is formed by forming a sacrificial plug over a substrate and forming active regions in the substrate adjacent the sacrificial plug. A film is then formed over portions of the substrate adjacent the sacrificial plug. The sacrificial plug is then selectively removed leaving an opening in the film, and a gate electrode is formed in the opening. The sacrificial plug can be formed from several materials including, for example, polysilicon and nitrogen-bearing species such as nitride. The gate electrode may, for example, be formed from temperature-sensitive metals such as copper since the gate electrode may be formed subsequent to high temperature steps of the fabrication, such as a source drain anneal, for example.
摘要:
A semiconductor device is formed which includes a shallow PMOS active region containing a heavy atom p-type dopant material. In an exemplary process for making a PMOS device or portion of a device, at least one PMOS gate electrode is formed over a PMOS device region of a substrate. A PMOS spacer is formed on a sidewall of a PMOS gate electrode. An amorphizing dopant material is selectively implanted into a PMOS active region using the PMOS spacer as a mask. A heavy atom p-type dopant material is selectively implanted into the PMOS active region using the PMOS spacer as a mask. The order of implantation of the amorphizing dopant material and the heavy atom p-type dopant material may be reversed.
摘要:
A PMOS or CMOS device includes an active region with a shallow heavy atom p-type implant. The PMOS device has a substrate, at least one gate electrode disposed on the substrate, and first and second doped active regions disposed adjacent to the gate electrode. The first active region has a higher concentration of a p-type heavy atom dopant material than the second active region. In one method of forming the PMOS device, spacers are formed on sidewalls of the gate electrode. A first p-type dopant material is selectively implanted into active regions adjacent to the gate electrode using the spacers as a mask. Then a portion of one of the spacers is removed to form a thinner spacer and a second p-type dopant material is selectively implanted into a first one of the active regions using the thinner spacer as a mask. The second p-type dopant material is a heavy atom species.
摘要:
A photolithographic system including a light filter that varies light intensity according to measured dimensional data that characterizes a lens error is disclosed. The light filter compensates for the lens error by reducing the light intensity of the image pattern as the lens error increases. In this manner, when the lens error causes focusing variations that result in enlarged portions of the image pattern, the light filter reduces the light intensity transmitted to the enlarged portions of the image pattern. This, in turn, reduces the rate in which regions of the photoresist layer beneath the enlarged portions of the image pattern are rendered soluble to a subsequent developer. As a result, after the photoresist layer is developed, linewidth variations that otherwise result from the lens error are reduced due to the light filter. Preferably, the light filter includes a light-absorbing film such as a semi-transparent layer such as calcium fluoride on a light-transmitting base such as a quartz plate, and the thickness of the light-absorbing film varies in accordance with the measured dimensional data to provide the desired variations in light intensity. The invention is particularly well-suited for patterning a photoresist layer that defines polysilicon gates of an integrated circuit device.
摘要:
A method is presented for forming a transistor wherein polysilicon is preferably deposited upon a dielectric-covered substrate to form a sacrificial polysilicon layer. The sacrificial polysilicon layer may then be reduced to a desired thickness. Thickness reduction of the sacrificial polysilicon layer is preferably undertaken by oxidizing a portion of the sacrificial polysilicon layer and then etching the oxidized portion. As an option, the sacrificial polysilicon layer may be heated such that it is recrystallized. The sacrificial polysilicon layer is preferably annealed in a nitrogen-bearing ambient such that it is converted to a gate dielectric layer that includes nitride. Polysilicon may be deposited upon the gate dielectric layer, and select portions of the polysilicon may be removed to form a gate conductor. LDD and source/drain areas may be formed adjacent to the gate conductor.
摘要:
A transistor is provided and formed using self-aligned low-resistance source and drain regions within a metal-oxide semiconductor (MOS) process. The gate of the transistor may also be formed from a low-resistance material such as a metal. The transistor channel is located in a polysilicon layer arranged over a dielectric layer on a semiconductor substrate. To fabricate the transistor, an isolating dielectric, polysilicon layer, and protective dielectric layer are deposited over a semiconductor substrate. Source/drain trenches are formed in the protective dielectric and polysilicon layers and subsequently filled with sacrificial dielectrics. The protective dielectric lying between these sacrificial dielectrics is removed, and replaced with sidewall spacers, a gate dielectric, and a gate conductor which may be formed from a low-resistance metal. The sacrificial dielectrics are subsequently removed and replaced with source/drain regions which may be formed from a low-resistance metal. The resulting transistor may exhibit low contact and series resistances, and increased operation speed.
摘要:
An integrated circuit containing separately optimized gate structures for n-channel and p-channel transistors is provided and formed. Original gate structures for both n-channel and p-channel transistors are patterned over appropriately-doped active regions of a semiconductor substrate. Protective dielectrics are formed over the semiconductor substrate to the same elevation level as the upper surfaces of the original gate structures, so that only the upper surfaces of the gate structures are exposed. A masking layer is used to cover the gate structures of either the p-channel or the n-channel transistors. The uncovered gate structures are removed, forming a trench within the protective dielectric in place of each removed gate structure. The trenches are refilled with a new gate structure which is preferably optimized for operation of the appropriate transistor type (n-channel or p-channel).
摘要:
A semiconductor device having a controlled drive current strength is produced by varying spacer width to accommodate any variation in gate electrode length from a desired value. After formation of the gate electrode on a substrate, the length is measured and compared to a desired value. Based on any differences between the measured and desired values, the width of spacer is determined in order to counteract the variation in gate electrode length. This results in maintaining the desired channel length after dopant implanting, to provide the desired drive current strength. The present process permits close control over the drive current strength of semiconductor devices and also decreased variation within and between lots and corresponding increases in productivity.
摘要:
An integrated circuit is presented. The integrated circuit may include a memory cell formed above an insulating base. The insulating base may either be arranged above a substrate or serve as a substrate itself. A transistor may be arranged above the memory cell. The transistor is preferably dielectrically isolated from the memory cell. In a preferred embodiment, a segmented substrate is arranged between the memory cell and transistor. The segmented substrate preferably includes a first conductive substrate layer arranged above and dielectrically spaced from the memory cell. A second conductive substrate layer may be formed above the first conductive substrate layer. The transistor may be arranged upon and within the second conductive substrate layer. Preferably, the segmented substrate further includes an intersubstrate dielectric layer interposed between the second conductive substrate layer and the first conductive substrate layer. The intersubstrate dielectric layer preferably serves to insulate the first conductive substrate layer from the second conductive substrate layer. An integrated circuit so configured may be fabricated with greater device density at reduced cost.