Abstract:
A method comprising preparing a styrenic polymer composition, melting the styrenic polymer composition to form a molten polymer, injecting the molten polymer into a mold cavity to form a preform, heating the preform to produce a heated preform, and expanding the heated preform to form an article. A method comprising substituting a styrenic polymer composition comprising from 0 wt. % to 6.5 wt. % plasticizer and equal to or greater than 2.5 wt. % elastomer for polyethylene terephthalate in an injection stretch blow molding process, wherein the wt. % is based on the total weight of the polymeric composition. A method comprising preparing a preform from a styrenic polymer composition, subjecting the preform to one or more heating elements, and rapidly heating the preform to produce a heated preform.
Abstract:
Disclosed is a method of producing a novel biaxially oriented film having a high diffraction of light, and flexibility. In particular, the invention disclosed provides a method for making an opaque impact copolymer film by stretching in two dimensions an impact polypropylene copolymer. The invention is disclosed to be useful for making a material particularly suitable for a variety of applications including labeling media, food packaging and laminates. Also disclosed is a multilayer film having a first impact polypropylene copolymer layer and a second layer of another polymer wherein the multilayer film has significantly reduced haze. Also disclosed is film produced with a filler that has increased porosity and flexibility.
Abstract:
Disclosed is a method of producing a novel biaxially oriented film having a high diffraction of light, and flexibility. In particular, the invention disclosed provides a method for making an opaque impact copolymer film by stretching in two dimensions an impact polypropylene copolymer. The invention is disclosed to be useful for making a material particularly suitable for a variety of applications including labeling media, food packaging and laminates. Also disclosed is a multilayer film having a first impact polypropylene copolymer layer and a second layer of another polymer wherein the multilayer film has significantly reduced haze. Also disclosed is film produced with a filler that has increased porosity and flexibility.
Abstract:
Injection stretch blow molded (ISBM) articles and methods of forming the same are described herein. The ISBM articles generally include a metallocene random propylene-based copolymer.
Abstract:
Methods for preparing an impact copolymer by selecting a continuous phase polymer having a first melt flow rate and selecting a rubber phase polymeric material such that the final melt flow rate of the impact copolymer is within 2 g/10 min of the first melt flow rate. Impact copolymers made from such methods and films and molded articles produced from such impact copolymers are also included.
Abstract:
A blown film composition including an impact copolymer polypropylene component and a nucleating agent, wherein the blown film has improved processing and physical properties.
Abstract:
Preforms for use in injection blow molding processes and such processes are described herein. The preforms can have both a body and a neck wherein the external body diameter of the preform is at most 95% of the external neck diameter. The body comprises internal and external diameters that together form a sidewall, the thickness of which can be greater than 2.0 mm. Also disclosed is a mold for the injection molding of the preform described above.
Abstract:
Injection stretch blow molded (ISBM) articles and methods of forming the same are described herein. The ISBM articles generally include a metallocene random propylene-based copolymer.
Abstract:
Polymerization processes and polymers formed therefrom are described herein. The polymerization processes generally include contacting an olefin monomer with a catalyst system to form polymer within a reaction vessel, withdrawing polymer from the reaction vessel, contacting the polymer with one or more initiation additives to form a modified polymer and extruding the modified polymer.
Abstract:
Disclosed is a polystyrene based polymer/layered compound nanocomposite for injection blow molding or injection stretch blow molding of articles. The nanocomposite can reduce shrinkage and warpage to the preform during the reheating process compared to neat polystyrene. The incorporation of layered compounds can increase the processability of PS preforms, help improve heating efficiency, and improve bottle mechanical properties. The layered compound can be treated with chemicals or compounds having an affinity with the styrene monomer or polystyrene, thus producing a treated layered compound having an affinity with the styrene monomer or polystyrene. The monomer and the layered compound can be combined prior to polymerization. The polymer and layered compound can be combined by solution mixing in a solvent. The layered compound can also be incorporated into the mixture by compounding a polymer product with the layered compound, or the combination of any of the above three approaches.