摘要:
One aspect of the present invention relates to a method of forming a non-volatile semiconductor memory device, involving the sequential or non-sequential steps of forming a charge trapping dielectric over a substrate, the substrate having a core region and a periphery region; removing at least a portion of the charge trapping dielectric in the periphery region; forming a gate dielectric in the periphery region; forming buried bitlines in the core region; removing at least a portion of the charge trapping dielectric positioned over the buried bitlines in the core region; forming a bitline isolation over the buried bitlines in the core region; and forming gates in the core region and the periphery region. Another aspect of the present invention relates to increasing the thickness of the gate dielectric in at least a portion of the periphery region simultaneously while forming the bitline isolation.
摘要:
One aspect of the present invention relates to a method of forming a non-volatile semiconductor memory device, involving the sequential or non-sequential steps of forming a charge trapping dielectric over a substrate, the substrate having a core region and a periphery region; removing at least a portion of the charge trapping dielectric in the periphery region; forming a gate dielectric in the periphery region; forming buried bitlines in the core region; and forming gates in the core region and the periphery region.
摘要:
One aspect of the present invention relates to a method of forming a non-volatile semiconductor memory device, involving the sequential or non-sequential steps of forming a charge trapping dielectric over a substrate, the substrate having a core region and a periphery region; removing at least a portion of the charge trapping dielectric in the periphery region; forming a gate dielectric in the periphery region; forming buried bitlines in the core region; and forming gates in the core region and the periphery region.
摘要:
One aspect of the present invention relates to a method of forming spacers in a silicon-oxide-nitride-oxide-silicon (SONOS) type nonvolatile semiconductor memory device, involving the steps of providing a semiconductor substrate having a core region and periphery region, the core region containing SONOS type memory cells and the periphery region containing gate transistors; implanting a first implant into the core region and a first implant into the periphery region of the semiconductor substrate; forming a spacer material over the semiconductor substrate; masking the core region and forming spacers adjacent the gate transistors in the periphery region; and implanting a second implant into the periphery region of the semiconductor substrate.
摘要:
Dummy columns of memory cells formed during fabrication outside edge columns are connected to the actual used memory cells of sectors or the like. The columns of dummy memory cells are compensated by floating the dummy memory cells during normal programming and erase cycles, or alternatively, by programming and erasing the dummy memory cells along with the actual used memory cells in the sector. By treating the dummy memory cells similar to the actual used cells, charge that leaks into the dummy cells during fabrication and normal operation that has deleterious effects at higher stress temperatures and/or due to the longevity of customer operation is substantially eliminated.
摘要:
A method and system for performing verify erasure comprises applying an erase pulse that provides a substantially high electric field to each I/O in a sector one at a time. This operation is important for single power supply devices since the beginning of erase band to band currents for the entire array are larger than can be supplied by drain pumps. After the first erase pulse, the erase verify routine can be performed on all the IO's together. In one particular example, a Vdrain voltage is selected to be at a substantially high positive voltage and the value of Vgate voltage is at a substantially high negative voltage where the voltage potential between Vdrain and Vgate is also a substantially high voltage.
摘要:
A method and system for programming and erasing the normal bits of a memory array of dual bit memory cells is accomplished by programming at a substantially high delta VT and an erase pulse that provides a substantially high electric field to each I/O in a sector one at a time. After the first erase pulse, the erase verify routine is performed on all the IO's together. The substantially higher VT assures that the memory array will maintain programmed data and erase data consistently after higher temperature stresses and/or customer operation over substantial periods of time. This erase pulse that provides a substantially high electric field is selected to erase band to band currents for the entire array that are larger than can be supplied by drain pumps.
摘要:
A method of programming flash EEPROM devices that provides self-limiting multi-level programming states. Each cell in the flash EEPROM device can be programmed to have one of multiple threshold voltages. Each cell to be programmed has a programming voltage applied to the gate, a programming voltage applied to the drain and bias voltage applied to either the source (Vs) or to the substrate (Vsub) or both. The bias voltages Vs or Vsub are determined during a precharacterization procedure and each desired threshold voltage has a corresponding bias voltage Vs or Vsub that provides the desired threshold voltage during the programming procedure. The bias voltages Vs or Vsub are selected to provide self-limiting programming by the effective vertical field Ev=Vg −Vt−(either Vs or Vsub), where Vt increases during programming until the programming stops. The lateral field El=Vd−(either Vs and/or Vsub) is adjusted during programming to keep the lateral field El equal to Vd.
摘要:
A memory device can include at least two ports for transferring data to and from the memory device; and plurality of memory cells, each memory cell including at least one element programmable between different impedance states, and a plurality of access devices, each access device providing a current path between the element and a different one of the ports.
摘要:
Methods, systems, and circuits for forming and operating a global hierarchical clock tree are described. The global hierarchical clock tree may comprise a clock circuit that operates to provide clock signals to a core circuit surrounded by the clock circuit. The clock circuit may include two or more first and second clock generator modules to generate a first and a second set of clock signals, respectively. The first and second clock modules may be located so that the first set of clock signals experience approximately equal first latencies and the second set of clock signals experience approximately equal second latencies. Additional methods, systems, and circuits are disclosed.