摘要:
An improved method of making a flash memory cell including a substrate having a floating gate of a first thickness includes depositing an insulator on the substrate and over the floating gate. The insulator is preferably a high quality oxide. A portion of the insulator not covering the floating gate has a second thickness which is greater than the first thickness of the floating gate. The method further includes polishing the insulator until the second thickness is substantially equal to the first thickness. Polishing results in a planar floating gate and insulator layer. The method further includes sequentially depositing a dielectric layer and a control gate layer on the planar floating gate and insulator layer and then etching these layers to complete the stacked gate structure of the memory cell.
摘要:
A method is provided for manufacturing a semiconductor with fewer steps and minimized variation in the etching process by using SiON as a bottom antireflective (BARC) layer and hard mask in conjunction with a thin photoresist layer. In one embodiment, an etch-stop layer is deposited on a semiconductor substrate, a dielectric layer is deposited on top of the etch-stop layer, a BARC is deposited on top of the dielectric layer, and a photoresist layer with a thickness less than the thickness of the BARC is then deposited on top of the BARC. The photoresist is then patterned, photolithographically processed, and developed. The BARC is then etched away in the pattern developed on the photoresist and to photoresist is then removed. The BARC is then used as a mask for the etching of the dielectric layer and is subsequently removed in the process of etchings the dielectric and etch-stop layers without the benefit of a separate BARC-removal step.
摘要:
A thin barrier layer of undoped silicon is formed on an ARC to prevent resist poisoning and footing. The silicon layer can be removed with improved yield and high selectivity with respect to the underlying gate dielectric layer, thereby avoiding degradation of the gate dielectric layer. Embodiments include forming a silicon oxynitride ARC on a polycrystalline silicon layer overlying a silicon oxide layer, depositing a thin undoped polycrystalline or amorphous silicon barrier layer on the ARC, forming a photoresist mask on the barrier layer, etching to form a gate electrode on a gate oxide layer and removing the photoresist mask. The undoped polycrystalline or amorphous silicon barrier layer is then removed employing conventional wet or dry etching techniques with high etch selectivity to the underlying gate oxide layer, thereby avoiding degradation of the gate oxide layer.
摘要:
A method is provided for manufacturing a semiconductor device on a semiconductor substrate using a dielectric as a bottom anti-reflective coating for formation of a photoresist contact opening which is used to enlarge the Final Inspection Critical Dimension (FICD) of the conductive contact. A high selectivity etch is used to form a tapered contact.
摘要:
The high density plasma metal etch rate of a conductive material within a dense array of conductive lines is increased to greater than the etch rate of the conductive material in a bordering open field by controlling the source power and the bottom power in a plasma chamber, thereby reducing overetching, resist loss, and oxide loss in the open field, and facilitating planarization.
摘要:
Memory gate stacks having widths of about 0.18 microns to 0.15 microns are formed by trimming a resist mask pattern, having line widths of about 0.25 microns, to a width of about 0.20 microns. An antireflective coating layer such as silicon oxynitride underlying the resist pattern is then etched to form etched silicon oxynitride pattern lines having widths of about 0.18 to 0.15 microns. The etched silicon oxynitride layer is then used for self-aligned etching of underlying layers to form the memory gate stack. Hence, a memory gate can be formed that has a width substantially less than the current photolithography limit during formation of the resist mask pattern.
摘要:
A hard resist layer is formed on and/or within a deep-UV configured resist mask prior to patterning a semiconductor device feature. The hard resist layer reduces the amount of polymer residue generated during the patterning process, which can effect the resulting profile of the device feature. The hard resist mask is formed by either ion implantation or plasma treatments. Due to the formation of the hard resist layer, the thickness of the resist mask can be reduced, thereby increasing the resolution capabilities of the resist mask.
摘要:
Undercutting of conductive lines in a dense array bordered by an open field is avoided by reducing the severity of etching when the conductive material in the open field is substantially removed. In a preferred embodiment, the flow rate of chlorine gas is reduced during high density chlorine plasma etching of a conductive pattern when the conductive material is substantially removed from the open field.
摘要:
A resist mask pattern having a reduced thickness is formed overlying on a silicon oxynitride film during formation of a memory gate. The resist mask pattern has a resist thickness (3000 to 4000 Angstroms) sufficient to withstand removal during etching of the silicon oxynitride film. The silicon oxynitride film, having a thickness of about 800 to 1500 Angstroms, is etched based on the resist mask pattern and then used as a mask pattern to etch the polysilicon gate layer underlying the silicon oxynitride layer, to expose a portion of an isolation region aligned relative to the resist mask pattern. The portion of the resist mask remaining after etching, in combination with the etched silicon oxynitride film, have a sufficient overall thickness to serve as a channel implant mask. Use of the resist mask pattern having the reduced thickness improves yield by minimizing the occurrence of misregistration, and enables reliable formation of spaces in the mask pattern having widths of less than 0.25 microns using conventional deep ultraviolet (DUV) photolithography techniques.
摘要:
A thermally grown oxide buffer layer is formed on a silicon layer prior to depositing an ARC thereon, thereby preventing damage to the silicon layer during ARC removal. Embodiments include thermally growing a silicon oxide buffer layer on an amorphous or polycrystalline silicon layer by thermal oxidation at a temperature of about 800° C. to about 900° C. in an atmosphere comprising oxygen or steam. A silicon oxynitride or silicon-rich silicon nitride ARC is then formed on the thermally grown protective silicon oxide buffer layer and a photoresist layer is formed on the ARC. The photoresist layer is patterned to form a mask and the underlying silicon layer etched to form a conductive feature, e.g., gate electrode. The photoresist mask is then removed and the ARC is stripped with hot phosphoric acid or by dry etching, while the thermally grown silicon oxide buffer layer protects the underlying silicon layer from damage.