摘要:
An optical device according to the present invention includes a device substrate, a translucent member, an optical element chip and a conductive portion. On a surface of the device substrate, an opening is provided so as to extend substantially in the vertical direction with respect to a surface of the device substrate and pass through the device substrate, the translucent member is provided so as to cover a first opening mouth of the opening, and the optical element chip is provided so as to cover the other opening mouth thereof. Part of the conductive portion is buried in the device substrate. The outline of the first opening mouth has a point-asymmetrical shape with respect to an approximate center point of the first opening mouth.
摘要:
An optical device according to the present invention includes a device substrate, a translucent member, an optical element chip and a conductive portion. On a surface of the device substrate, an opening is provided so as to extend substantially in the vertical direction with respect to a surface of the device substrate and pass through the device substrate, the translucent member is provided so as to cover a first opening mouth of the opening, and the optical element chip is provided so as to cover the other opening mouth thereof. Part of the conductive portion is buried in the device substrate. The outline of the first opening mouth has a point-asymmetrical shape with respect to an approximate center point of the first opening mouth.
摘要:
An optical device according to the present invention includes a device substrate, a translucent member, an optical element chip and a conductive portion. On a surface of the device substrate, an opening is provided so as to extend substantially in the vertical direction with respect to a surface of the device substrate and pass through the device substrate, the translucent member is provided so as to cover a first opening mouth of the opening, and the optical element chip is provided so as to cover the other opening mouth thereof. Part of the conductive portion is buried in the device substrate. The outline of the first opening mouth has a point-asymmetrical shape with respect to an approximate center point of the first opening mouth.
摘要:
A semiconductor device including a package (2) having a plurality of wall portions (9a) and a plurality of conductor portions (4), a semiconductor element such as a solid-state image pickup device (1) mounted in an internal space of the base, thin metal wires (5) electrically connecting the semiconductor element and the conductor portions (4) between the wall portions (9a), a resin sealing material (7) implanted in the spaces between the wall portions (9a), and a closing member such as a cover glass (6). The region for connecting the thin metal wires (5) and the wall portion (9a) region overlap each other, so that the device can be reduced in size and in height. The cover glass (6) can not move easily from the correct position because the wall portions (9a) serve as supporting columns, thereby improving the yield.
摘要:
A semiconductor device including a package (2) having a plurality of wall portions (9a) and a plurality of conductor portions (4), a semiconductor element such as a solid-state image pickup device (1) mounted in an internal space of the base, thin metal wires (5) electrically connecting the semiconductor element and the conductor portions (4) between the wall portions (9a), a resin sealing material (7) implanted in the spaces between the wall portions (9a), and a closing member such as a cover glass (6). The region for connecting the thin metal wires (5) and the wall portion (9a) region overlap each other, so that the device can be reduced in size and in height. The cover glass (6) can not move easily from the correct position because the wall portions (9a) serve as supporting columns, thereby improving the yield.
摘要:
Through holes are preformed in a ceramic sheet to form recessed portions at corners or side ends of a package 2 used for a solid-state image device. The package is positioned by allowing projections 52, 53, and 54 of a positioning jig 51 to come into contact with end faces 5 and 6 in the recessed portions along their shapes. The accuracy in combining a solid-state image element and a lens block is improved by using a method of positioning a package in which burrs caused when the package is produced by dividing a ceramic baked product do not affect the accuracy.