摘要:
It is an object of the present invention to effectively and efficiently inhibit the influence of an eliminated gas from a built-up film deposited in a reaction chamber and reduce an incubation time to improve flatness of a thin film. A manufacturing method of a semiconductor device includes a preprocess step and a film-forming step. In the preprocess step, an RPH (Remote Plasma Hydrogenation) process of supplying a hydrogen radical onto a substrate (202), thereafter, an RPN (Remote Plasma Nitridation) process of supplying a nitrogen radical onto the substrate (203), and thereafter, an RPO (Remote Plasma Oxidation) process of supplying an oxygen radical onto the substrate (204) are performed during a substrate temperature increase for raising a substrate temperature up to a film-forming temperature. In the film-forming step, after the substrate temperature is raised up to the film-forming temperature, a film-forming process is performed by a thermal CVD method by supplying a source gas onto the substrate (205), and thereafter, the RPO process is performed (206). In this film-forming step, the film-forming source supply onto the substrate and the RPO process are preferably repeated a plurality of times.
摘要:
According to the present invention, flatness of a thin film formed on a substrate is improved without generating particles and lowering productivity. A method of manufacturing a semiconductor device includes a first thin film layer forming step A and a second thin film layer forming step B. In the first thin film layer forming step A, on the way of heating and raising the temperature of the substrate up to a film-forming temperature, a film-forming source supply in which an organic source gas is made adhere onto the substrate in yet unreacted state is performed (202), and thereafter, a RPO process (Remote Plasma Oxidation) in which an oxygen radical is supplied onto the substrate to form a first thin film layer is performed (203). In this first thin film layer forming step A, it is preferable to repeat the film-forming source supply onto the substrate and the RPO process more than once. In the second thin film layer forming step B, after the source gas is supplied onto the substrate by a thermal CVD method to perform a film-forming process (205) after raising the temperature of the substrate to the film-forming temperature, the RPO process is performed to form a second thin film layer on the first thin film layer with a predetermined film thickness (206).
摘要:
To obtain a conductive metal film having superior step coverage, adhesiveness, and high productivity. A conductive metal film or metal oxidized film suitable as a capacitor electrode is formed on a substrate by performing an excited-gas supplying step after a source gas supplying step. In the source gas supplying step, gas obtained by vaporizing an organic source is supplied to the substrate, and the gas thus supplied is allowed to be adsorbed on the substrate. In the excited-gas supplying step, oxygen or nitrogen containing gas excited by plasma is supplied to the substrate to decompose the source adsorbed on the substrate, thus forming a film. An initial film-forming stop is a step of forming the film by repeating the source gas supplying step and the excited-gas supplying step once or multiple times. A desired thickness can be obtained by one step of the initial film-forming step. However, thereafter, in addition to the initial film-forming step, the film-forming step may be two steps by performing the main film-forming step of simultaneously supplying the gas obtained by vaporizing the organic source and oxygen containing gas or nitrogen containing gas not excited by plasma by using a thermal CVD method.
摘要:
Disclosed is a producing method of a semiconductor device, including: loading at least one substrate formed on a surface thereof with a tungsten film into a processing chamber; and forming a silicon oxide film on the surface of the substrate which includes the tungsten film by alternately repeating following steps a plurality of times: supplying the processing chamber with a first reaction material including a silicon atom while heating the substrate at 400° C.; and supplying the processing chamber with hydrogen and water which is a second reaction material while heating the substrate at 400° C. at a ratio of the water with respect to the hydrogen of 2×10−1 or lower.
摘要:
To provide a manufacturing method of a semiconductor device and a substrate processing apparatus capable of easily controlling a nitrogen concentration distribution in a film containing a metal atom and a silicon atom, and manufacturing a high quality semiconductor device. The method comprises a step of forming a film containing the metal atom and the silicon atom on a substrate 30 in a reaction chamber 4, and performing a nitriding process for the film, wherein the film is formed by changing a silicon concentration at least in two stages in the step of forming a film.
摘要:
To obtain a conductive metal film having superior step coverage, adhesiveness, and high productivity. A conductive metal film or metal oxidized film suitable as a capacitor electrode is formed on a substrate by performing an excited-gas supplying step after a source gas supplying step. In the source gas supplying step, gas obtained by vaporizing an organic source is supplied to the substrate, and the gas thus supplied is allowed to be adsorbed on the substrate. In the excited-gas supplying step, oxygen or nitrogen containing gas excited by plasma is supplied to the substrate to decompose the source adsorbed on the substrate, thus forming a film. An initial film-forming stop is a step of forming the film by repeating the source gas supplying step and the excited-gas supplying step once or multiple times. A desired thickness can be obtained by one step of the initial film-forming step. However, thereafter, in addition to the initial film-forming step, the film-forming step may be two steps by performing the main film-forming step of simultaneously supplying the gas obtained by vaporizing the organic source and oxygen containing gas or nitrogen containing gas not excited by plasma by using a thermal CVD method.
摘要:
Disclosed is a producing method of a semiconductor device, including: loading at least one substrate formed on a surface thereof with a tungsten film into a processing chamber; and forming a silicon oxide film on the surface of the substrate which includes the tungsten film by alternately repeating following steps a plurality of times: supplying the processing chamber with a first reaction material including a silicon atom while heating the substrate at 400° C.; and supplying the processing chamber with hydrogen and water which is a second reaction material while heating the substrate at 400° C. at a ratio of the water with respect to the hydrogen of 2×10−1 or lower.
摘要:
To provide a manufacturing method of a semiconductor device and a substrate processing apparatus capable of easily controlling a nitrogen concentration distribution in a film containing a metal atom and a silicon atom, and manufacturing a high quality semiconductor device.The method comprises a step of forming a film containing the metal atom and the silicon atom on a substrate 30 in a reaction chamber 4, and performing a nitriding process for the film, wherein the film is formed by changing a silicon concentration at least in two stages in the step of forming a film.
摘要:
A mold and die metallic material, an air-permeable member for mold and die use, and a method for making the same are provided. The mold and die metallic material is made by forming a mixed material containing stainless steel fibers with an equivalent diameter of 30-300 μm and a length of 0.4-5.0 mm, and stainless steel powder, heat sintering a green body of the mixed material, and heating the sintered body thus obtained in a nitrogen atmosphere and nitrided; wherein average open pore diameter thereof is 3-50 μm.
摘要:
A mold and die metallic material, an air-permeable member for mold and die use, and a method for making the same are provided. The mold and die metallic material is made by forming a mixed material containing stainless steel fibers with an equivalent diameter of 30-300 μm and a length of 0.4-5.0 mm, and stainless steel powder, heat sintering a green body of the mixed material, and heating the sintered body thus obtained in a nitrogen atmosphere and nitrided; wherein average open pore diameter thereof is 3-50 μm.