摘要:
A drive unit comprises an electric motor, a drive unit casing 2 accommodating therein the electric motor, an inverter 3 that controls the electric motor, and a flow passage of a refrigerant that cools the inverter. The inverter defines a space R between it and a heat sink 5 integral with a substrate of the inverter, and is mounted to the drive unit casing, the space is compartmented by separation means 8 into a first chamber R1 facing the heat sink and a second chamber R2 facing the drive unit casing, and is communicated to the flow passage of the refrigerant, and the heat sink comprises heat-sink-side fins 56 extending into the first chamber and apart from the separation means. Thereby, temperature gradient can be provided between the both chambers, and effective cooling of the heat sink and the drive unit casing can be made possible with less flow rate of the refrigerant as compared with the case where the entire space comprising a single layer is cooled by the refrigerant according to the heat-resistant temperature of the inverter.
摘要:
A drive unit comprises an electric motor 1, a drive unit casing 2 accommodating therein the electric motor, an inverter 3 that controls the electric motor, and a flow passage of a refrigerant that cools the inverter. The inverter is mounted on a heat sink 53 and mounted to the drive unit casing with a space R defined, and the space is communicated to the flow passage of the refrigerant. The heat sink comprises fins 56, and the drive unit casing comprises fins 22, the both fins being apart from each other. Thereby, both a side of the drive unit casing and a side of the heat sink are effectively cooled by heat exchange with a cooling refrigerant in wide areas. Also, the fins are apart from each other whereby direct heat conduction is avoided and efficient cooling is enabled with temperature gradient conformed to heat-resistant temperatures.
摘要:
A drive unit which uses an electric motor as a power source and has an integrated inverter, with a cooling circuit for the electric motor and the inverter. The drive unit includes a drive unit case, the electric motor housed within the case, and the inverter fixed to the case. A coolant flow passage is provided between the drive unit case and the inverter. The inverter is fixed to the drive unit case through a panel wall, and a partition divides the coolant flow passage into chambers which are coextensive in parallel. As a result, the coolant which flows through the coolant flow passage acts as a two-stage heat shield, barring the heat generated by the electric motor from being transmitted to the inverter.
摘要:
A drive unit comprises an electric motor, a drive unit casing 2 accommodating therein the electric motor, an inverter 3 that controls the electric motor, and a flow passage of a refrigerant that cools the inverter. The inverter defines a space R between it and a heat sink 5 integral with a substrate of the inverter, and is mounted to the drive unit casing, the space being communicated to the flow passage of the refrigerant. The heat sink comprises fins 56 that cross the space R, and abuts against the drive unit casing in a state of low thermal conduction. Thereby, the heat sink is effectively cooled by heat exchange with a cooling refrigerant in wide areas. Also, the fins contact with the drive unit casing in a state of low thermal conduction via a heat insulation material, etc., whereby direct heat conduction is avoided and efficient cooling is enabled while temperature gradient conformed to heat-resistant temperatures of the inverter and the electric motor is maintained.
摘要:
A drive unit comprises an electric motor 1, a drive unit casing 2 accommodating therein the electric motor, an inverter 3 that controls the electric motor, and a flow passage of a refrigerant that cools the inverter. The inverter is mounted on a heat sink 53 and mounted to the drive unit casing with a space R defined, and the space is communicated to the flow passage of the refrigerant. The heat sink comprises fins 56, and the drive unit casing comprises fins 22, the both fins being apart from each other. Thereby, both a side of the drive unit casing and a side of the heat sink are effectively cooled by heat exchange with a cooling refrigerant in wide areas. Also, the fins are apart from each other whereby direct heat conduction is avoided and efficient cooling is enabled with temperature gradient conformed to heat-resistant temperatures.
摘要:
A drive unit includes an electric motor as a power source, and a simplified coolant circuit for cooling the electric motor. The drive unit further includes, in the drive unit case, a circulation passage L for coolant for cooling the motor M. A circulation passage F for a second coolant is provided separate from the circulation passage L for coolant. A heat exchange portion C within the circulation passage L for the first coolant is provided in the drive unit case for heat exchange with the second coolant in the circulation passage F, and the first coolant for cooling the electric motor is cooled by heat transfer to the second coolant in that heat exchange portion C. Accordingly, the coolant circuit in the drive unit case is simplified.
摘要:
A drive unit including an electric motor, a drive unit casing accommodating therein the electric motor, an inverter that controls the electric motor and a flow passage in which a refrigerant passes therein in order to cool the inverter, wherein the inverter is mounted on the drive unit casing such that a heat sink, united with a substrate of the inverter, defines a space that is in communication with the flow passage on a portion thereof opposed to the drive unit casing, the space is compartmented by a separator into a first chamber facing the heat sink and a second chamber facing the drive unit casing and the heat sink comprises heat-sink side fins extending into the first chamber and apart from the separator.
摘要:
A drive unit comprises an electric motor, a drive unit casing 2 accommodating therein the electric motor, an inverter 3 that controls the electric motor, and a flow passage of a refrigerant that cools the inverter. The inverter defines a space R between it and a heat sink 5 integral with a substrate of the inverter, and is mounted to the drive unit casing, the space being communicated to the flow passage of the refrigerant. The heat sink comprises fins 56 that cross the space R, and abuts against the drive unit casing in a state of low thermal conduction. Thereby, the heat sink is effectively cooled by heat exchange with a cooling refrigerant in wide areas. Also, the fins contact with the drive unit casing in a state of low thermal conduction via a heat insulation material, etc., whereby direct heat conduction is avoided and efficient cooling is enabled while temperature gradient conformed to heat-resistant temperatures of the inverter and the electric motor is maintained.
摘要:
In a drive unit for a hybrid vehicle, a generator-motor is arranged on a first axis and a drive motor is arranged on a second axis in parallel with the first axis. A drive unit casing houses the generator-motor, the drive motor, an inverter unit for the generator-motor and the drive motor and a smoothing condenser for smoothing power source voltage of the inverter unit. The inverter unit is attached to the drive unit casing and is diametrically disposed relative to the generator-motor and the drive motor. The smoothing condenser is attached to the inside of the drive unit casing from which an end portion thereof projects. The inverter unit can be attached to the drive unit casing as a subassembly. By the invention, the drive unit can be made more compact, and the wiring can be simplified.
摘要:
A drive device with electronic circuit, including floated wiring for electrically connecting the solid wirings of a circuit to each other and an electronic circuit mechanically connected to an engine, wherein the electronic circuit is formed so that the flat surface thereof including the floated wiring is substantially disposed vertically relative to the output axis of the engine, whereby the vibration of the engine in the major X- and Z-directions can be prevented from applying to the floated wiring in Y-axis direction to increase the seismic resistance of the electronic circuit, and the arrangement of the drive device having the electronic circuit mechanically installed thereon can be realized.